|
Zapiski Nauchnykh Seminarov LOMI, 1976, Volume 59, Pages 3–24
(Mi znsl2082)
|
|
|
|
This article is cited in 2 scientific papers (total in 5 papers)
The evolution of measures determined by the Navier–Stokes equations and on the solvability of the Cauchy problem for the Hopf statistical equation
A. M. Vershik, O. A. Ladyzhenskaya
Abstract:
We prove the solvability of the Cauchy problem for Hopf's statistical equation, corresponding to the general three-dimensional initial- and boundary-value problem for the Navier–Stokes equations, with the assumption that the exterior forces and the boundary conditions are fixed while the initial field of the velocities is stochastic. Preliminarily we construct a family of measurable single-valued mappings $W_t$ defining the evolution $\mu_t$ of the probability measure $\mu$, given on the metric space $Y_R$ of the initial field of velocities according to the formula: $\mu_t(\omega)=\mu(W_t^{-1}\omega)$, where $\omega$ is any set from the $\sigma$-algebra $\Sigma(Y_R)$ of analytic sets of the space $Y_R$.
Citation:
A. M. Vershik, O. A. Ladyzhenskaya, “The evolution of measures determined by the Navier–Stokes equations and on the solvability of the Cauchy problem for the Hopf statistical equation”, Boundary-value problems of mathematical physics and related problems of function theory. Part 9, Zap. Nauchn. Sem. LOMI, 59, "Nauka", Leningrad. Otdel., Leningrad, 1976, 3–24; J. Soviet Math., 10:2 (1978), 195–212
Linking options:
https://www.mathnet.ru/eng/znsl2082 https://www.mathnet.ru/eng/znsl/v59/p3
|
Statistics & downloads: |
Abstract page: | 326 | Full-text PDF : | 134 |
|