Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1976, Volume 60, Pages 103–108 (Mi znsl2074)  

On the approximation of reduction classes of RPC by decidable classes

S. A. Norgela
Abstract: Prenex formulas of RPC are examined; all formulas obtained one from the other by renamings of objective and predicate variables and by deletion of fictitious quantifiers are reckoned to be alike. The number of occurrences of atomic formulas is called the length of a formula; $|M^{(n)}|$ denotes the number of formulas in a set $M$, having length $n$. $M$ is said to be approximatable by deducibility if an algorithmexists which for each positive $\varepsilon$ yields a solvable set $N$ of formulas and a number $n_0$ such that for all $n>n_0|N^{(n)}|/|M^{(n)}|>1-\varepsilon$. The number $\alpha$ is called the deducibility number of the class $A$ of formulas if the sequence
$$ \frac{|\widetilde A^{(n)}|}{|A^{(n)}|},\quad n=1,2,3,\dots, $$
where $\widetilde A$ is the set of deducible formulas from $A$, effectively converges to $\alpha$. The deducibility number is found, or, at least, approximatability is proved, for a number of known reduction classes in RPC. Two items of literature are cited.
English version:
Journal of Soviet Mathematics, 1980, Volume 14, Issue 5, Pages 1493–1496
DOI: https://doi.org/10.1007/BF01693982
Bibliographic databases:
UDC: 51.01:164
Language: Russian
Citation: S. A. Norgela, “On the approximation of reduction classes of RPC by decidable classes”, Studies in constructive mathematics and mathematical logic. Part VII, Zap. Nauchn. Sem. LOMI, 60, "Nauka", Leningrad. Otdel., Leningrad, 1976, 103–108; J. Soviet Math., 14:5 (1980), 1493–1496
Citation in format AMSBIB
\Bibitem{Nor76}
\by S.~A.~Norgela
\paper On the approximation of reduction classes of RPC by decidable classes
\inbook Studies in constructive mathematics and mathematical logic. Part~VII
\serial Zap. Nauchn. Sem. LOMI
\yr 1976
\vol 60
\pages 103--108
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2074}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=538177}
\zmath{https://zbmath.org/?q=an:0449.03013|0342.02033}
\transl
\jour J. Soviet Math.
\yr 1980
\vol 14
\issue 5
\pages 1493--1496
\crossref{https://doi.org/10.1007/BF01693982}
Linking options:
  • https://www.mathnet.ru/eng/znsl2074
  • https://www.mathnet.ru/eng/znsl/v60/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024