Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1976, Volume 60, Pages 65–74 (Mi znsl2071)  

This article is cited in 1 scientific paper (total in 1 paper)

Absorption relation on regular sets

S. Yu. Maslov
Full-text PDF (546 kB) Citations (1)
Abstract: Let $R$ be a regular expression (constructed in the usual manner from the letters of an alphabet $A$ by using the operations $\cdot$, $\vee$ и $\{\}$), $R$ be the corresponding regular (recognizable by a finite automaton) set of words in $A$. For words $P$ and $Q$ from $R$ there is defined a relation $P\prec_RQ$ ($QR$-absorbs $P$) satisfying the following conditions:
1) $P\prec_RP$, $\Lambda\prec_{\{R\}}P$ ($\Lambda$ is the empty word);
2) if $P\prec_{R_1}Q$, then $P\prec_{R_1\vee R_2}Q$, $P\prec_{R_2\vee R_1}Q$, $P\prec_{\{R_1\}}Q$;
3) if $P_1\prec_{R_1}Q_1$ and $P_1\prec_{R_2}Q_2$, then $P_1P_2\prec_{R_1\cdot R_2}Q_1Q_2$;
4) if $P_1\prec_{\{R\}}Q_1$ and $P_2\prec_{\{R\}}Q_2$, then $P_1P_2\prec_{\{R\}}Q_1Q_2$.
THEOREM. For any $R$ and any infinite sequence of words from $R$ there exists an infinite subsequence such that $P_1\prec_RP_2\prec_RP_3\prec_R\dots$ .
Results of such kind have proved applicable to the proofs of the solvability of certain canonic calculi arising in the modelling of biological evolution.
English version:
Journal of Soviet Mathematics, 1980, Volume 14, Issue 5, Pages 1468–1475
DOI: https://doi.org/10.1007/BF01693979
Bibliographic databases:
UDC: 51.01:164
Language: Russian
Citation: S. Yu. Maslov, “Absorption relation on regular sets”, Studies in constructive mathematics and mathematical logic. Part VII, Zap. Nauchn. Sem. LOMI, 60, "Nauka", Leningrad. Otdel., Leningrad, 1976, 65–74; J. Soviet Math., 14:5 (1980), 1468–1475
Citation in format AMSBIB
\Bibitem{Mas76}
\by S.~Yu.~Maslov
\paper Absorption relation on regular sets
\inbook Studies in constructive mathematics and mathematical logic. Part~VII
\serial Zap. Nauchn. Sem. LOMI
\yr 1976
\vol 60
\pages 65--74
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2071}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=660299}
\zmath{https://zbmath.org/?q=an:0449.68019|0355.94061}
\transl
\jour J. Soviet Math.
\yr 1980
\vol 14
\issue 5
\pages 1468--1475
\crossref{https://doi.org/10.1007/BF01693979}
Linking options:
  • https://www.mathnet.ru/eng/znsl2071
  • https://www.mathnet.ru/eng/znsl/v60/p65
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024