Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1976, Volume 60, Pages 49–58 (Mi znsl2069)  

This article is cited in 2 scientific papers (total in 2 papers)

On an approximative version of the notion of constructive analytic function

E. Ya. Dantsin
Full-text PDF (539 kB) Citations (2)
Abstract: A constructive analytic function f is defined as a pair of form $(A,\Omega)$, where $A$ is a fundamental sequence in some constructive metric space and $\Omega$ is a regulator of its convergence into itself. The pointwise-defined function $f$ corresponding to function $f^*$ turns out to be Bishop-differentiable [2], while the domain of $f^*$ is the limit of a growing sequence of compacta. The derivative of a constructive analytic function and the integral along a curve are defined approximatively. It is proved that the fundamental theorems of constructive complex analysis are valid for such functions. Eight items of literature are cited.
English version:
Journal of Soviet Mathematics, 1980, Volume 14, Issue 6, Pages 1457–1463
DOI: https://doi.org/10.1007/BF01693977
Bibliographic databases:
UDC: 51.01
Language: Russian
Citation: E. Ya. Dantsin, “On an approximative version of the notion of constructive analytic function”, Studies in constructive mathematics and mathematical logic. Part VII, Zap. Nauchn. Sem. LOMI, 60, "Nauka", Leningrad. Otdel., Leningrad, 1976, 49–58; J. Soviet Math., 14:6 (1980), 1457–1463
Citation in format AMSBIB
\Bibitem{Dan76}
\by E.~Ya.~Dantsin
\paper On an approximative version of the notion of constructive analytic function
\inbook Studies in constructive mathematics and mathematical logic. Part~VII
\serial Zap. Nauchn. Sem. LOMI
\yr 1976
\vol 60
\pages 49--58
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2069}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=536662}
\zmath{https://zbmath.org/?q=an:0449.03065|0345.02024}
\transl
\jour J. Soviet Math.
\yr 1980
\vol 14
\issue 6
\pages 1457--1463
\crossref{https://doi.org/10.1007/BF01693977}
Linking options:
  • https://www.mathnet.ru/eng/znsl2069
  • https://www.mathnet.ru/eng/znsl/v60/p49
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024