Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1976, Volume 66, Pages 114–132 (Mi znsl2022)  

This article is cited in 5 scientific papers (total in 5 papers)

Shortest paths on convex hypersurfaces of Riemannian spaces

S. V. Buyalo
Full-text PDF (882 kB) Citations (5)
Abstract: A convex hypersurface $\mathscr F$ in a Riemannian space $M^m$ is part of the boundary of an $m$-dimensional locally convex set. It is established that there exists an intrinsic metric of such a hypersurface $\mathscr F$ and it has curvature which is bounded below in the sense of A. D. Aleksandrov; curves with bounded variation of rotation in $\mathscr F$ are shortest paths in $M^m$. For surfaces in $R^m$ these facts are well known; however, the constructions leading to them are in large part inapplicable to spaces $M^m$. Hence approximations to $\mathscr F$ by smooth equidistant (not necessarily convex) ones and normal polygonal paths, introduced (in the case of $R^3$) by Yu. F. Borisov are used.
English version:
Journal of Soviet Mathematics, 1979, Volume 12, Issue 1, Pages 73–85
DOI: https://doi.org/10.1007/BF01098417
Bibliographic databases:
UDC: 513.7
Language: Russian
Citation: S. V. Buyalo, “Shortest paths on convex hypersurfaces of Riemannian spaces”, Investigations in topology. Part II, Zap. Nauchn. Sem. LOMI, 66, "Nauka", Leningrad. Otdel., Leningrad, 1976, 114–132; J. Soviet Math., 12:1 (1979), 73–85
Citation in format AMSBIB
\Bibitem{Buy76}
\by S.~V.~Buyalo
\paper Shortest paths on convex hypersurfaces of Riemannian spaces
\inbook Investigations in topology. Part~II
\serial Zap. Nauchn. Sem. LOMI
\yr 1976
\vol 66
\pages 114--132
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2022}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=643664}
\zmath{https://zbmath.org/?q=an:0405.53041|0364.53024}
\transl
\jour J. Soviet Math.
\yr 1979
\vol 12
\issue 1
\pages 73--85
\crossref{https://doi.org/10.1007/BF01098417}
Linking options:
  • https://www.mathnet.ru/eng/znsl2022
  • https://www.mathnet.ru/eng/znsl/v66/p114
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024