Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 67, Pages 195–200 (Mi znsl2017)  

Representation of the direct sum of two quadratic fields by rational symmetric matrices

L. I. Roginskii
Abstract: Let $f$ be a fourth-degree polynomial over the field of rational numbers $\mathbf Q$ with leading coefficient $I$ which decomposes over $\mathbf Q$ into the product of two irreducible second-degree polynomials. It is proved that in order that $f$ be the characteristic polynomial of a symmetric matrix with elements in $\mathbf Q$, it is necessary and sufficient that all the roots of $f$ be real.
English version:
Journal of Soviet Mathematics, 1981, Volume 16, Issue 1, Pages 893–897
DOI: https://doi.org/10.1007/BF01213899
Bibliographic databases:
UDC: 511
Language: Russian
Citation: L. I. Roginskii, “Representation of the direct sum of two quadratic fields by rational symmetric matrices”, Studies in number theory. Part 4, Zap. Nauchn. Sem. LOMI, 67, "Nauka", Leningrad. Otdel., Leningrad, 1977, 195–200; J. Soviet Math., 16:1 (1981), 893–897
Citation in format AMSBIB
\Bibitem{Rog77}
\by L.~I.~Roginskii
\paper Representation of the direct sum of two quadratic fields by rational symmetric matrices
\inbook Studies in number theory. Part~4
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 67
\pages 195--200
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2017}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=447172}
\zmath{https://zbmath.org/?q=an:0453.15013|0375.15012}
\transl
\jour J. Soviet Math.
\yr 1981
\vol 16
\issue 1
\pages 893--897
\crossref{https://doi.org/10.1007/BF01213899}
Linking options:
  • https://www.mathnet.ru/eng/znsl2017
  • https://www.mathnet.ru/eng/znsl/v67/p195
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:110
    Full-text PDF :36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024