Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 336, Pages 153–198 (Mi znsl201)  

This article is cited in 3 scientific papers (total in 3 papers)

Boundary value problems for the bi-harmonic equation and for the iterated Laplacian in a three-dimensional domain with an edge

S. A. Nazarova, G. H. Sweersb

a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
b Delft University of Technology
Full-text PDF (492 kB) Citations (3)
References:
Abstract: For domains $\Omega$ with piecewise smooth boundaries the generalized solution $u\in W^2_2(\Omega)$ of the equation $\Delta_x^2u=f$ with the boundary conditions $u=\Delta_xu=0$ in general cannot be obtained by solving iteratively a system of two Poisson equations under homogeneous Dirichlet conditions. Such a system is obtained by setting $v=-\Delta u$. In the two-dimensional case this fact is known as the Sapongyan paradox in the theory of simply supported polygonal plates. In the present paper the three-dimensional problem is investigated for a domain with a smooth edge $\Gamma$. If the variable opening angle $\alpha\in C^\infty(\Gamma)$ is less than $\pi$ everywhere on the edge, the boundary value problem for the bi-harmonic equation is equivalent to the iterated Dirichlet problem and its solution $u$ inherits the positivity preserving property from these problems. In the case that $\alpha\in(\pi,2\pi)$ the procedure of solving the two Dirichlet problems must be modified by permitting an infinite-dimensional kernel and co-kernel of operators and determining the solution $u\in W^2_2(\Omega)$ through inverting a certain integral operator on the contour $\Gamma$. If $\alpha(s)\in(3\pi/2,2\pi)$ for a point $s\in\Gamma$ then there exists a non-negative function $f\in L_2(\Omega)$ for which the solution $u$ changes sign inside the domain $\Omega$. In the case of the crack, that is ($\alpha=2\pi$ everywhere on $\Gamma$), one needs to introduce a special scale of weighted function spaces. Also there the positivity preserving property fails. In some geometrical situations the questions of a correct setting for the boundary value problem of the bi-harmonic equation and the positivity property remain open.
Received: 30.01.2005
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 143, Issue 2, Pages 2936–2960
DOI: https://doi.org/10.1007/s10958-007-0177-3
Bibliographic databases:
UDC: 517.946
Language: Russian
Citation: S. A. Nazarov, G. H. Sweers, “Boundary value problems for the bi-harmonic equation and for the iterated Laplacian in a three-dimensional domain with an edge”, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Zap. Nauchn. Sem. POMI, 336, POMI, St. Petersburg, 2006, 153–198; J. Math. Sci. (N. Y.), 143:2 (2007), 2936–2960
Citation in format AMSBIB
\Bibitem{NazSwe06}
\by S.~A.~Nazarov, G.~H.~Sweers
\paper Boundary value problems for the bi-harmonic equation and for the iterated Laplacian in a three-dimensional domain with an edge
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~37
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 336
\pages 153--198
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2270884}
\zmath{https://zbmath.org/?q=an:1153.35023}
\elib{https://elibrary.ru/item.asp?id=9307458}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 2
\pages 2936--2960
\crossref{https://doi.org/10.1007/s10958-007-0177-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247480474}
Linking options:
  • https://www.mathnet.ru/eng/znsl201
  • https://www.mathnet.ru/eng/znsl/v336/p153
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:526
    Full-text PDF :206
    References:85
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024