Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 68, Pages 51–61 (Mi znsl2001)  

Herbrand strategies and the “greater deducibility” relation

S. Yu. Maslov, S. A. Norgela
Abstract: A Herbrand strategy $T$ is that algorithm which for an arbitrary prenex formula $F$ gives a sequence of its Herbrand disjunctions. Let $F^T$ be the first tautology in this sequence. $T$ is complete if for every deducible $F$, FT exists. The strategy $T$ gives k superfluous terms for $F$ if k disjuncts can be removed from $F^T$ while preserving its tautological character; $T$ is optimal for $F$ if there exists no Herbrand disjunction for $F$ shorter than $F^T$. There are complete strategies that give arbitrarily small proportion of terms for all $F$. There are also strategies that work with incomplete information about $F$ (e.g., with the signature of $F$ or a list of its elementary subformulas). For any such complete strategy we can construct a class of formulas for which the proportion of superfluous terms tends to 1 as the length of the formula tends to $\infty$. However, there is no possible algorithm for finding the superfluous terms which may be dropped. Even for strategies that require complete and uniform review of all possible permutations of terms (for a given signature), the class of formulas for which $T$ is optimal is undecidable. The proof uses properties of the relation "$F$ is more deducible than $G$", studied in terms of the general theory of calculi.
English version:
Journal of Soviet Mathematics, 1981, Volume 15, Issue 1, Pages 28–33
DOI: https://doi.org/10.1007/BF01404105
Bibliographic databases:
UDC: 51.01:164
Language: Russian
Citation: S. Yu. Maslov, S. A. Norgela, “Herbrand strategies and the “greater deducibility” relation”, Theoretical application of methods of mathematical logic. Part II, Zap. Nauchn. Sem. LOMI, 68, "Nauka", Leningrad. Otdel., Leningrad, 1977, 51–61; J. Soviet Math., 15:1 (1981), 28–33
Citation in format AMSBIB
\Bibitem{MasNor77}
\by S.~Yu.~Maslov, S.~A.~Norgela
\paper Herbrand strategies and the ``greater deducibility'' relation
\inbook Theoretical application of methods of mathematical logic. Part~II
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 68
\pages 51--61
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2001}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=505334}
\zmath{https://zbmath.org/?q=an:0449.03006|0358.02030}
\transl
\jour J. Soviet Math.
\yr 1981
\vol 15
\issue 1
\pages 28--33
\crossref{https://doi.org/10.1007/BF01404105}
Linking options:
  • https://www.mathnet.ru/eng/znsl2001
  • https://www.mathnet.ru/eng/znsl/v68/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024