Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 68, Pages 38–50 (Mi znsl2000)  

An approach to the constructivization of Cantor's set theory

L. N. Gordeev
Abstract: A new approach is proposed for the construction of constructive analogs of set theory in hyperarithmetic languages $\mathbf L_\Lambda$, where $\Lambda$ is a scale of constructive ordinals. For every ordinal $\alpha\leqslant\Lambda$ in the language $\mathbf L_\Lambda$, a special relation of equality $=_\alpha$ is defined for codes of one-parameter formulas (conditions) of the level $\alpha$ in a constructive hyperarithmetic hierarchy corresponding to the scale $\Lambda$. The membership relation, $\in_\alpha$ (also expressible in the language $\mathbf L_\Lambda$), is defined by the condition $x\in_\alpha y\leftrightharpoons\exists z$ ($z=_\alpha x\&z\varepsilon_\alpha y$), where the relation $\varepsilon_\alpha$ is obtained by suitable refinement of the traditional representations of the constructive relation of membership. This results in a hierarchy of constructive analogs $M_\alpha$ of the theory of sets (in which the sets are represented by codes of conditions of level $\alpha$, identified modulo the relation $=_\alpha$, and $\in_\alpha$ is taken as the relation of membership). Some properties of this hierarchy are introduced which show that for the limits $\alpha$, $M_\alpha$ is sufficiently rich from the traditional set theoretic standpoint.
English version:
Journal of Soviet Mathematics, 1981, Volume 15, Issue 1, Pages 22–28
DOI: https://doi.org/10.1007/BF01404104
Bibliographic databases:
UDC: 51.01:164
Language: Russian
Citation: L. N. Gordeev, “An approach to the constructivization of Cantor's set theory”, Theoretical application of methods of mathematical logic. Part II, Zap. Nauchn. Sem. LOMI, 68, "Nauka", Leningrad. Otdel., Leningrad, 1977, 38–50; J. Soviet Math., 15:1 (1981), 22–28
Citation in format AMSBIB
\Bibitem{Gor77}
\by L.~N.~Gordeev
\paper An approach to the constructivization of Cantor's set theory
\inbook Theoretical application of methods of mathematical logic. Part~II
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 68
\pages 38--50
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2000}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=536666}
\zmath{https://zbmath.org/?q=an:0449.03060|0362.02023}
\transl
\jour J. Soviet Math.
\yr 1981
\vol 15
\issue 1
\pages 22--28
\crossref{https://doi.org/10.1007/BF01404104}
Linking options:
  • https://www.mathnet.ru/eng/znsl2000
  • https://www.mathnet.ru/eng/znsl/v68/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024