Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 68, Pages 3–18 (Mi znsl1996)  

A maximal sequence of classes transformable by primitive recursion in a given class

A. P. Beltiukov
Abstract: Let $\mathscr E(g)$ be the closure of a set of functions
$$ U_{1\leqslant k\leqslant n}\{\lambda x_1\dots x_n.x_k\}\cup\{\lambda x.0,\lambda x\lambda y.\max(x,y),\lambda x.x+1,g\} $$
with respect to composition and bounded recursion; let $\mathscr RA$ be the closure with respect to cornposition of the set of all functions obtained by a single application of primitive recursion to the functions of $\mathscr A$. Let $f$ be an increasing function with a graph from $\mathscr E^\circ$ bounded below by the function $\lambda x.x+1$. Let, for any k and sufficiently large $x$,
$$ f(x+1)>f(x)+k. $$
A sequence of functions $\alpha_i$ is constructed such that for any $i$
$$ \mathscr E(\alpha_i)\subsetneqq\mathscr E(\alpha_{i+1}),\quad U^\infty_{j=1}\mathscr E(\alpha_j)\subsetneqq\mathscr E(f),\quad \mathscr E(f)=\mathscr{RE}(\alpha_i); $$
moreover, for any nondecreasing function $g$ with graph from $\mathscr E^\circ$ bounded below by the function $\lambda x.x+1$, if $U^\infty_{j=0}\mathscr E(\alpha_j)\subseteq\mathscr E(g)$, then $\mathscr E(f)\subsetneqq\mathscr E(g)$. If $f(x)=2^x$ for all $x$, then the classes $\mathscr E(\alpha_i)$ appear naturally on scrutiny of the memory bank used in calculating the functions on Turing machines.
English version:
Journal of Soviet Mathematics, 1981, Volume 15, Issue 1, Pages 1–10
DOI: https://doi.org/10.1007/BF01404100
Bibliographic databases:
UDC: 51.01:518.5
Language: Russian
Citation: A. P. Beltiukov, “A maximal sequence of classes transformable by primitive recursion in a given class”, Theoretical application of methods of mathematical logic. Part II, Zap. Nauchn. Sem. LOMI, 68, "Nauka", Leningrad. Otdel., Leningrad, 1977, 3–18; J. Soviet Math., 15:1 (1981), 1–10
Citation in format AMSBIB
\Bibitem{Bel77}
\by A.~P.~Beltiukov
\paper A maximal sequence of classes transformable by primitive recursion in a given class
\inbook Theoretical application of methods of mathematical logic. Part~II
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 68
\pages 3--18
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1996}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=505394}
\zmath{https://zbmath.org/?q=an:0449.03032|0358.02042}
\transl
\jour J. Soviet Math.
\yr 1981
\vol 15
\issue 1
\pages 1--10
\crossref{https://doi.org/10.1007/BF01404100}
Linking options:
  • https://www.mathnet.ru/eng/znsl1996
  • https://www.mathnet.ru/eng/znsl/v68/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024