|
Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 69, Pages 136–148
(Mi znsl1988)
|
|
|
|
Construction of characteristic functions for the system of Navier–Stokes–Voigt equations and the BBM equation
A. P. Oskolkov
Abstract:
For the system of Navier–Stokes–Voigt equations
\begin{equation}
\frac{\partial\vec v}{\partial t}-\nu\Delta\vec v-x\frac{\partial\Delta\vec v}{\partial t}+v_k\frac{\partial\vec v}{\partial x_k}+\operatorname{grad}p=0,\quad \operatorname{div}\vec v=0
\tag{1}
\end{equation}
and the BBM equation
\begin{equation}
\frac{\partial v}{\partial t}+v\frac{\partial v}{\partial x}-\frac{\partial^3v}{\partial t\partial x^2}=0
\tag{2}
\end{equation}
characteristic functions $\mathscr F(\vec \theta;t)$ of the measure $\mu_t(\omega)=\mu(V^{-1}_t(\omega))$, describing the evolution in time of the probability measure $\mu(\omega)$ defined on the set of initial conditions for the first initial boundary-value problem for system (1) or Eq. (2) are constructed and investigated. It is shown that the characteristic functions $\mathscr F(\overset{\to}\theta;t)$ constructed satisfy partial differential equations with an infinite number of independent variables $(t;\theta_1,\theta_2,\dots)$ [the statistical equations of E. Hopf for the system (1) or Eq. (2)].
Citation:
A. P. Oskolkov, “Construction of characteristic functions for the system of Navier–Stokes–Voigt equations and the BBM equation”, Boundary-value problems of mathematical physics and related problems of function theory. Part 10, Zap. Nauchn. Sem. LOMI, 69, "Nauka", Leningrad. Otdel., Leningrad, 1977, 136–148; J. Soviet Math., 10:1 (1978), 95–103
Linking options:
https://www.mathnet.ru/eng/znsl1988 https://www.mathnet.ru/eng/znsl/v69/p136
|
Statistics & downloads: |
Abstract page: | 228 | Full-text PDF : | 82 |
|