Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 336, Pages 55–66 (Mi znsl197)  

This article is cited in 2 scientific papers (total in 2 papers)

Weakly first-order interior estimates and Hessian equations

N. M. Ivochkina

St. Petersburg State University of Architecture and Civil Engineering
Full-text PDF (179 kB) Citations (2)
References:
Abstract: The development of the modern theory of fully nonlinear second-order partial differential equations has amazingly enriched classic collection of ideas and methods. In this paper we construct the first-order interior a priori estimates of new type for solutions of Hessian equations and do it in order to present the most transparent version of Krylov's method and its tight connection with fully nonlinear equations.
Received: 11.08.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 143, Issue 2, Pages 2875–2882
DOI: https://doi.org/10.1007/s10958-007-0173-7
Bibliographic databases:
UDC: 517.9
Language: English
Citation: N. M. Ivochkina, “Weakly first-order interior estimates and Hessian equations”, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Zap. Nauchn. Sem. POMI, 336, POMI, St. Petersburg, 2006, 55–66; J. Math. Sci. (N. Y.), 143:2 (2007), 2875–2882
Citation in format AMSBIB
\Bibitem{Ivo06}
\by N.~M.~Ivochkina
\paper Weakly first-order interior estimates and Hessian equations
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~37
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 336
\pages 55--66
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl197}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2270880}
\zmath{https://zbmath.org/?q=an:1136.35033}
\elib{https://elibrary.ru/item.asp?id=9307454}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 2
\pages 2875--2882
\crossref{https://doi.org/10.1007/s10958-007-0173-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247353175}
Linking options:
  • https://www.mathnet.ru/eng/znsl197
  • https://www.mathnet.ru/eng/znsl/v336/p55
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:227
    Full-text PDF :85
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024