Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 73, Pages 203–206 (Mi znsl1954)  

This article is cited in 2 scientific papers (total in 2 papers)

Short communications

Spectral measures and duality of spectral subspaces of contractions with slowly growing resolvent

Yu. P. Ginzburg
Full-text PDF (225 kB) Citations (2)
Abstract: We consider the class $\Pi$ of contracting operators $T$ with spectrum on the unit circle $\Gamma$, acting on a separable Hilbert space and subject to the following restriction on the growth of the resolvent $R_T(\lambda)$:
$$ \sup_{0\leqslant\rho<1}\int^{2\pi}_0\ln^+\{(1-\rho)\|R_T(\rho e^{i\varphi})\|\}d\varphi<+\infty. $$
We study the spectral subspaces $\Omega_T(B)$ for $T\in\Pi$, corresponding to arbitrary Borel subsets of the circle $\Gamma$; in parallel we study a Borel measure $\omega_T(B)$ on $\Gamma$, adequate for $\Omega_T(B)$ in the following sense:
$$ \Omega_T(B)=\{0\}\Longleftrightarrow\omega_T(B)=0. $$
English version:
Journal of Soviet Mathematics, 1986, Volume 34, Issue 6, Pages 2144–2146
DOI: https://doi.org/10.1007/BF01741589
Bibliographic databases:
Document Type: Article
UDC: 513.88
Language: Russian
Citation: Yu. P. Ginzburg, “Spectral measures and duality of spectral subspaces of contractions with slowly growing resolvent”, Investigations on linear operators and function theory. Part VIII, Zap. Nauchn. Sem. LOMI, 73, "Nauka", Leningrad. Otdel., Leningrad, 1977, 203–206; J. Soviet Math., 34:6 (1986), 2144–2146
Citation in format AMSBIB
\Bibitem{Gin77}
\by Yu.~P.~Ginzburg
\paper Spectral measures and duality of spectral subspaces of contractions with slowly growing resolvent
\inbook Investigations on linear operators and function theory. Part~VIII
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 73
\pages 203--206
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1954}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=513178}
\zmath{https://zbmath.org/?q=an:0603.47020|0406.47008}
\transl
\jour J. Soviet Math.
\yr 1986
\vol 34
\issue 6
\pages 2144--2146
\crossref{https://doi.org/10.1007/BF01741589}
Linking options:
  • https://www.mathnet.ru/eng/znsl1954
  • https://www.mathnet.ru/eng/znsl/v73/p203
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024