Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 73, Pages 195–202 (Mi znsl1953)  

This article is cited in 4 scientific papers (total in 4 papers)

Short communications

Multiple interpolation by Blaschke products

I. V. Videnskii
Full-text PDF (391 kB) Citations (4)
Abstract: Basic result: let $\{z_n\}$ be a sequence of points of the unit disc and $\{k_n\}$ be a sequence of natural numbers, satisfying the conditions:
$$ \inf_m\prod^\infty_{n=1,n\ne m}\biggl|\dfrac{z_m-z_n}{1-z_nz_m}\biggr|^{k_n}>\delta>0,\quad \sup_n k_n=N<+\infty. $$
Then for any bounded sequence of complex numbers $\omega$, $\omega=\{\omega_n^{(k)}\}^{\infty,k_n-1}_{n=1,k=0}$, there exists a sequence $\Lambda=\{\lambda_n^{(k)}\}^{\infty,k_n-1}_{n=1,k=0}$ such that the function $f=M\|\omega\|_{\infty}B_\Lambda$ interpolates $\omega$:
$$ f^{(k)}(z_n)(1-|z_n|^2)^k/K!=\omega_n^{(k)}, $$
where $B_\Lambda$ is the Blaschke product with zeros at the points $\{\lambda_n^{(k)}\}$, $M$ is a constant, $|M|<31^N/\delta^N$, $|\lambda_n^{(k)}-z_n|/|1-\overline{\lambda}_n^{(k)}z_n|<\delta/31^N$. If $N=1$ this theorem is proved by Earl (RZhMat, 1972, IB163). The idea of the proof, as in Earl, is that if the zeros $\{\lambda_n^{(k)}\}$ run through neighborhoods of the points $z_n$, then the Blaschke products with these zeros interpolate sequences $\omega$, filling some neighborhood of zero in the space $l^\infty$. The theorem formulated is used to get interpolation theorems in classes narrower than $H^\infty$.
English version:
Journal of Soviet Mathematics, 1986, Volume 34, Issue 6, Pages 2139–2143
DOI: https://doi.org/10.1007/BF01741588
Bibliographic databases:
Document Type: Article
UDC: 517.948:513.8, 519.4
Language: Russian
Citation: I. V. Videnskii, “Multiple interpolation by Blaschke products”, Investigations on linear operators and function theory. Part VIII, Zap. Nauchn. Sem. LOMI, 73, "Nauka", Leningrad. Otdel., Leningrad, 1977, 195–202; J. Soviet Math., 34:6 (1986), 2139–2143
Citation in format AMSBIB
\Bibitem{Vid77}
\by I.~V.~Videnskii
\paper Multiple interpolation by Blaschke products
\inbook Investigations on linear operators and function theory. Part~VIII
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 73
\pages 195--202
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1953}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=513177}
\zmath{https://zbmath.org/?q=an:0596.30053|0406.30023}
\transl
\jour J. Soviet Math.
\yr 1986
\vol 34
\issue 6
\pages 2139--2143
\crossref{https://doi.org/10.1007/BF01741588}
Linking options:
  • https://www.mathnet.ru/eng/znsl1953
  • https://www.mathnet.ru/eng/znsl/v73/p195
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024