|
Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 73, Pages 193–194
(Mi znsl1952)
|
|
|
|
Short communications
Solution of the exponential moment problem in the space $L^2(0,\infty)$
S. A. Avdonin
Abstract:
We study the system of exponentials $\{\exp(-\lambda_kt)\}\subset L_2(0,+\infty)$, $\lambda_k=c\{1+C(1/k)\}k^\beta$, $\beta>1$, $c>0$, An asymptotic formula is obtained for the biorthogonal system $\theta_k$,,
$$
\theta_k=\exp 2k[v.p.\int_0^\infty\tau^{1/\beta}(\tau^2-1)^{-1}d\tau+0(1)].
$$
is obtained.
In the space $L^2(0,\infty)$ we consider the moment problem.
Citation:
S. A. Avdonin, “Solution of the exponential moment problem in the space $L^2(0,\infty)$”, Investigations on linear operators and function theory. Part VIII, Zap. Nauchn. Sem. LOMI, 73, "Nauka", Leningrad. Otdel., Leningrad, 1977, 193–194; J. Soviet Math., 34:6 (1986), 2137–2138
Linking options:
https://www.mathnet.ru/eng/znsl1952 https://www.mathnet.ru/eng/znsl/v73/p193
|
Statistics & downloads: |
Abstract page: | 198 | Full-text PDF : | 63 |
|