Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 73, Pages 118–135 (Mi znsl1948)  

This article is cited in 8 scientific papers (total in 8 papers)

Absolutely continuous spectrum of a nondissipative operator and a functional model. II

S. N. Naboko
Full-text PDF (882 kB) Citations (8)
Abstract: The second part of the paper (the first is published in J. Sov. Math.,16, No. 3 (1981)), is devoted to the study of nondissipative operators in Hilbert space, which are “nearly” self-adjoint. In the model representation, generalizing the familiar model of B. S. Nagy–C. Foias for dissipative operators, formulas are obtained for spectral projectors on a segment of the absolutely continuous spectrum and conditions for their boundedness are studied. Questions of linear similarity for a generally nondissipative operator and its parts to self-adjoint and dissipative operators are considered. New proofs are found for the similarity theorems of L. A. Sakhnovich and Davis–Foias. Some of the results are new even in the dissipative case which is not excluded.
English version:
Journal of Soviet Mathematics, 1986, Volume 34, Issue 6, Pages 2090–2101
DOI: https://doi.org/10.1007/BF01741583
Bibliographic databases:
UDC: 517.948.35
Language: Russian
Citation: S. N. Naboko, “Absolutely continuous spectrum of a nondissipative operator and a functional model. II”, Investigations on linear operators and function theory. Part VIII, Zap. Nauchn. Sem. LOMI, 73, "Nauka", Leningrad. Otdel., Leningrad, 1977, 118–135; J. Soviet Math., 34:6 (1986), 2090–2101
Citation in format AMSBIB
\Bibitem{Nab77}
\by S.~N.~Naboko
\paper Absolutely continuous spectrum of a nondissipative operator and a functional model.~II
\inbook Investigations on linear operators and function theory. Part~VIII
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 73
\pages 118--135
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1948}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=513172}
\zmath{https://zbmath.org/?q=an:0596.47016|0406.47007}
\transl
\jour J. Soviet Math.
\yr 1986
\vol 34
\issue 6
\pages 2090--2101
\crossref{https://doi.org/10.1007/BF01741583}
Linking options:
  • https://www.mathnet.ru/eng/znsl1948
  • https://www.mathnet.ru/eng/znsl/v73/p118
    Cycle of papers
    This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:271
    Full-text PDF :110
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024