Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 73, Pages 102–117 (Mi znsl1947)  

This article is cited in 2 scientific papers (total in 2 papers)

Local conditions for the existence of the spectral shift function

L. S. Koplienko
Full-text PDF (750 kB) Citations (2)
Abstract: Let $U_0$, $U_1$ be unitary operators in a Hilbert space. If the operator $U_1-U_0$ is nuclear, then (as M. G. Krein established) there exists a function $\eta$ on the unit circle $\mathbf T$, $\eta=\eta(U_1,U_0)$, $\eta\in L_1(\mathbf T)$ satisfying the equality
\begin{gather} tr(\varphi(U_1)-\varphi(U_0))=\int_{\mathbf T}\eta(\zeta)\varphi'(\zeta)d\zeta \end{gather}
for all functions $\varphi$ with derivative $\varphi'$ from the Wiener class. M. Sh. Rirman and M. G. Krein proved that the function $\varphi'$ is connected with the scattering matrix $S$ for the pair $U_0$, $U_1$ by
\begin{gather} \det S(\zeta)=\exp(-2\pi i\eta(\zeta)), \tag{2} \end{gather}

In this paper (1) and (2) are proved under more general (local) conditions on the pair $U_0$, $U_1$. Under these conditions we investigate some properties of the function n and describe the class of functions $\eta$, which are admissible in (1). Applications to differential operators are given.
English version:
Journal of Soviet Mathematics, 1986, Volume 34, Issue 6, Pages 2080–2090
DOI: https://doi.org/10.1007/BF01741582
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: L. S. Koplienko, “Local conditions for the existence of the spectral shift function”, Investigations on linear operators and function theory. Part VIII, Zap. Nauchn. Sem. LOMI, 73, "Nauka", Leningrad. Otdel., Leningrad, 1977, 102–117; J. Soviet Math., 34:6 (1986), 2080–2090
Citation in format AMSBIB
\Bibitem{Kop77}
\by L.~S.~Koplienko
\paper Local conditions for the existence of the spectral shift function
\inbook Investigations on linear operators and function theory. Part~VIII
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 73
\pages 102--117
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1947}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=513171}
\zmath{https://zbmath.org/?q=an:0596.47013|0406.47006}
\transl
\jour J. Soviet Math.
\yr 1986
\vol 34
\issue 6
\pages 2080--2090
\crossref{https://doi.org/10.1007/BF01741582}
Linking options:
  • https://www.mathnet.ru/eng/znsl1947
  • https://www.mathnet.ru/eng/znsl/v73/p102
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024