Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 73, Pages 52–69 (Mi znsl1944)  

This article is cited in 2 scientific papers (total in 2 papers)

How good can a nonhereditary family be?

L. N. Dovbysh, N. K. Nikol'skii, V. N. Sudakov
Full-text PDF (922 kB) Citations (2)
Abstract: A family of vectors of $\mathfrak X=\{x_n\}_{n\geqslant1}$ a Hilbert space $H$ is said to be hereditarily complete, if it has biorthogonal $\mathfrak X'$ (minimally) and any element of $H$ can be reconstructed from its Fourier series: $x\in V((x,x'_n)x_n:n\geqslant1)$. In this paper we describe all pairs of spaces $A$, $B$, which contain minimal mutually biorthogonal and complete families $\mathfrak X,\mathfrak X'$ ($V(\mathfrak X)=A$, $V(\mathfrak X')=B$ and $\sup_{n\geqslant1}\|x_n\|\cdot\|x'_n\|<+\infty$: for this it is necessary and sufficient that the operator $P_AP_BP_A$ not be completely continuous. This assertion allows one to prove that: 1) if $d_n>0$,$\sum_{n\geqslant}d_n^2==\infty$, then there exist an orthonormal basis $\{\varphi_n\}_{n\geqslant1}$ and complete but not hereditarily complete biorthogonal families $\mathfrak X$, $\mathfrak X'$ in $H$, such that $\|x_n-\varphi_n\|\leqslant d_n$, $\|x'_n-\varphi_n\|\leqslant d_n(n\geqslant1)$ 2) if $\omega(n)>0$, $\lim_n\omega(n)=+\infty$, then there exist families of the type described in the preceding assertion for which $|\mathscr P_\sigma|\leqslant c\omega(\operatorname{card}\sigma)$, where $\sigma$ is any finite set of natural numbers and $\mathscr P_\sigma x=\sum_{n\in\sigma}(x,x'_n)x_n$ is the spectral projector corresponding to it. One of the auxiliary assertions is the description of all real collections $\alpha=(\alpha_k)^n_{k=1}$, representable in the form $\alpha_k=q(f_k)$, $1\leqslant k\leqslant n$, where $q$ is a Hilbert seminorm defined in the Euclidean space $E^n$, $\{f_k\}^n_{k=1}$ is a suitable orthonormal basis. This set is the convex hull of all permutations of the eigenvalues $(\lambda_1,\dots,\lambda_n)$ of the seminorm $q$.
English version:
Journal of Soviet Mathematics, 1986, Volume 34, Issue 6, Pages 2050–2060
DOI: https://doi.org/10.1007/BF01741579
Bibliographic databases:
UDC: 513.88
Language: Russian
Citation: L. N. Dovbysh, N. K. Nikol'skii, V. N. Sudakov, “How good can a nonhereditary family be?”, Investigations on linear operators and function theory. Part VIII, Zap. Nauchn. Sem. LOMI, 73, "Nauka", Leningrad. Otdel., Leningrad, 1977, 52–69; J. Soviet Math., 34:6 (1986), 2050–2060
Citation in format AMSBIB
\Bibitem{DovNikSud77}
\by L.~N.~Dovbysh, N.~K.~Nikol'skii, V.~N.~Sudakov
\paper How good can a nonhereditary family be?
\inbook Investigations on linear operators and function theory. Part~VIII
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 73
\pages 52--69
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1944}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=513168}
\zmath{https://zbmath.org/?q=an:0596.46015|0406.46018}
\transl
\jour J. Soviet Math.
\yr 1986
\vol 34
\issue 6
\pages 2050--2060
\crossref{https://doi.org/10.1007/BF01741579}
Linking options:
  • https://www.mathnet.ru/eng/znsl1944
  • https://www.mathnet.ru/eng/znsl/v73/p52
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:309
    Full-text PDF :106
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024