|
Zapiski Nauchnykh Seminarov LOMI, 1978, Volume 76, Pages 124–158
(Mi znsl1936)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
A. F. Lavrik's truncated equations
R. M. Kaufman
Abstract:
By a new method, we obtain some known results of A. F. Lavrik (Dokl. Akad. Nauk SSSR, 171, No. 2, 278–280 (1966); Mat. Zametki, 2, No. 5, 475–482 (1967); Izv. Akad. Nauk SSSR, Ser. Mat., 30, No. 2, 433–448 (1966)) regarding the truncated functional equations of various $L$-functions. As an application, we give an estimate of Dedekind's zeta-function of an algebraic number field $K$ of degree $n\leqslant4$ $\zeta_K(\frac12+it)\ll t^{n/6}\log^ct$, $t>1$ and a similar estimate for $L$-series with grцssencharacters. The method of the paper allows us to consider fields of degree $n\leqslant12$.
Citation:
R. M. Kaufman, “A. F. Lavrik's truncated equations”, Analytical theory of numbers and theory of functions, Zap. Nauchn. Sem. LOMI, 76, "Nauka", Leningrad. Otdel., Leningrad, 1978, 124–158; J. Soviet Math., 18:3 (1982), 374–398
Linking options:
https://www.mathnet.ru/eng/znsl1936 https://www.mathnet.ru/eng/znsl/v76/p124
|
Statistics & downloads: |
Abstract page: | 168 | Full-text PDF : | 58 |
|