|
Zapiski Nauchnykh Seminarov LOMI, 1978, Volume 76, Pages 65–71
(Mi znsl1933)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Rationality of generating series for the Fourier coefficient of Siegel modular forms of genus $n$
S. A. Evdokimov
Abstract:
One proves the rationality of the multiple power series of the form
$$
\sum_{\delta_1\geqslant0}\dots\sum_{\delta_r\geqslant0}a(p_1^{\delta_1}\dots p_r^{\delta_r}N)
t_1^{\delta_1}\dots t_r^{\delta_r},
$$
where $a(\dots)$ is the Fourier coefficient of an arbitrary Siegel modular form of genus $n\ge 1$ relative to a congruence subgroup of the group $Sp_n(\mathbf Z)$,
$p_1,\dots,p_r$ being a collection of prime numbers, dividing the step of the form.
Citation:
S. A. Evdokimov, “Rationality of generating series for the Fourier coefficient of Siegel modular forms of genus $n$”, Analytical theory of numbers and theory of functions, Zap. Nauchn. Sem. LOMI, 76, "Nauka", Leningrad. Otdel., Leningrad, 1978, 65–71; J. Soviet Math., 18:3 (1982), 334–339
Linking options:
https://www.mathnet.ru/eng/znsl1933 https://www.mathnet.ru/eng/znsl/v76/p65
|
Statistics & downloads: |
Abstract page: | 124 | Full-text PDF : | 44 |
|