|
Zapiski Nauchnykh Seminarov POMI, 2006, Volume 337, Pages 274–286
(Mi znsl193)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
The behavior of Riesz means of the coefficients of a symmetric square $L$-function
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $f(z)$ be a holomorphic Hecke eigencuspform of even weight $k$ with respect to $SL(2,\mathbb Z)$ and let $L(s,\mathrm{sym}^2f)=\sum_{n=1}^\infty c_nn^{-s}$, $\operatorname{Re}s>1$, be the symmetric square $L$-function associated with $f$. Represent the Riesz mean $(\rho\ge 0)$
$$
\frac1{\Gamma(\rho+1)}\sum_{n\le x}'(x-n)^\rho c_n=:D_{\rho}(x;\mathrm{sym}^2 f)
$$
as the sum of the “residue function” $\Gamma(\rho+1)^{-1}L(0,\mathrm{sym}^2f)x^\rho$ and the “error term”
$$
D_\rho(x;\mathrm{sym}^2f)=\frac{L(0,\mathrm{sym}^2f)}{\Gamma(\rho+1)}x^\rho+\Delta_\rho(x;\mathrm{sym}^2f).
$$
Using the Voronoi formula for $\Delta_\rho(x;\mathrm{sym}^2f)$, obtained earlier (see Zap. Nauchn. Semin. POMI. 314, 247–256 (2004)), the integral
$$
\int_1^X\Delta_\rho{(x;\mathrm{sym}^2f)}^2\,dx,
$$
is estimated. In this way, an asymptotics for $0<\rho\leqslant1$ and an upper bound for $\rho=0$ are obtained. Also the existence of a limiting distribution for the function
$$
x^{-\frac23\rho-\frac13}\Delta_\rho(x;\mathrm{sym}^2f), \quad 0<\rho\leqslant1,
$$
and, as a corollary, for the function
$$
x^{-\frac23\rho-\frac13}D_{\rho}(x;\mathrm{sym}^2f), \quad 0<\rho<1.
$$
is established. Bibliography: 12 titles.
Received: 08.09.2006
Citation:
O. M. Fomenko, “The behavior of Riesz means of the coefficients of a symmetric square $L$-function”, Analytical theory of numbers and theory of functions. Part 21, Zap. Nauchn. Sem. POMI, 337, POMI, St. Petersburg, 2006, 274–286; J. Math. Sci. (N. Y.), 143:3 (2007), 3174–3181
Linking options:
https://www.mathnet.ru/eng/znsl193 https://www.mathnet.ru/eng/znsl/v337/p274
|
Statistics & downloads: |
Abstract page: | 259 | Full-text PDF : | 73 | References: | 71 |
|