Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 337, Pages 274–286 (Mi znsl193)  

This article is cited in 5 scientific papers (total in 5 papers)

The behavior of Riesz means of the coefficients of a symmetric square $L$-function

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (210 kB) Citations (5)
References:
Abstract: Let $f(z)$ be a holomorphic Hecke eigencuspform of even weight $k$ with respect to $SL(2,\mathbb Z)$ and let $L(s,\mathrm{sym}^2f)=\sum_{n=1}^\infty c_nn^{-s}$, $\operatorname{Re}s>1$, be the symmetric square $L$-function associated with $f$. Represent the Riesz mean $(\rho\ge 0)$
$$ \frac1{\Gamma(\rho+1)}\sum_{n\le x}'(x-n)^\rho c_n=:D_{\rho}(x;\mathrm{sym}^2 f) $$
as the sum of the “residue function” $\Gamma(\rho+1)^{-1}L(0,\mathrm{sym}^2f)x^\rho$ and the “error term”
$$ D_\rho(x;\mathrm{sym}^2f)=\frac{L(0,\mathrm{sym}^2f)}{\Gamma(\rho+1)}x^\rho+\Delta_\rho(x;\mathrm{sym}^2f). $$
Using the Voronoi formula for $\Delta_\rho(x;\mathrm{sym}^2f)$, obtained earlier (see Zap. Nauchn. Semin. POMI. 314, 247–256 (2004)), the integral
$$ \int_1^X\Delta_\rho{(x;\mathrm{sym}^2f)}^2\,dx, $$
is estimated. In this way, an asymptotics for $0<\rho\leqslant1$ and an upper bound for $\rho=0$ are obtained. Also the existence of a limiting distribution for the function
$$ x^{-\frac23\rho-\frac13}\Delta_\rho(x;\mathrm{sym}^2f), \quad 0<\rho\leqslant1, $$
and, as a corollary, for the function
$$ x^{-\frac23\rho-\frac13}D_{\rho}(x;\mathrm{sym}^2f), \quad 0<\rho<1. $$
is established. Bibliography: 12 titles.
Received: 08.09.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 143, Issue 3, Pages 3174–3181
DOI: https://doi.org/10.1007/s10958-007-0201-7
Bibliographic databases:
UDC: 511.466, 517.863
Language: Russian
Citation: O. M. Fomenko, “The behavior of Riesz means of the coefficients of a symmetric square $L$-function”, Analytical theory of numbers and theory of functions. Part 21, Zap. Nauchn. Sem. POMI, 337, POMI, St. Petersburg, 2006, 274–286; J. Math. Sci. (N. Y.), 143:3 (2007), 3174–3181
Citation in format AMSBIB
\Bibitem{Fom06}
\by O.~M.~Fomenko
\paper The behavior of Riesz means of the coefficients of a~symmetric square $L$-function
\inbook Analytical theory of numbers and theory of functions. Part~21
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 337
\pages 274--286
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2271968}
\zmath{https://zbmath.org/?q=an:1137.11059}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 3
\pages 3174--3181
\crossref{https://doi.org/10.1007/s10958-007-0201-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248224933}
Linking options:
  • https://www.mathnet.ru/eng/znsl193
  • https://www.mathnet.ru/eng/znsl/v337/p274
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :73
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024