Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 337, Pages 233–237 (Mi znsl190)  

This article is cited in 1 scientific paper (total in 1 paper)

Approximation by entire functions on subsets of a ray

O. V. Sil'vanovich, N. A. Shirokov

Saint-Petersburg State University
Full-text PDF (142 kB) Citations (1)
References:
Abstract: Let $E\subset\mathbb R^+$ be a set consisting of finitely many intervals and a ray $[a,\infty)$, and let $H_\omega^r(E)$ be the set of functions defined on $E$ for which
$$ |f^{(r)}(x)-f^{(r)}(y)|\le c_f\omega(|x-y|), $$
where the continuity module $\omega(x)$ satisfies the condition
$$ \int_0^y\frac{\omega(x)}{x}dx+y\int_y^\infty\frac{\omega(x)}{x^2}dx\le C_0\omega(y), \quad y>0. $$
Let $C_\sigma^{(r,\omega)}$, $\sigma>0$, denote the class of entire functions $F$ of order 1/2 and of type $\sigma$ such that
$$ \sup_{z\in\mathbb C\setminus\mathbb R^+}\frac{|F(z)|e^{-\sigma|\operatorname{Im}\sqrt{z}|}}{1+|z|^r\omega(|z|)+\sigma^{-2r}\omega(\sigma^{-2})}<\infty. $$
In the paper, given a function $f\in H_\omega^r(E)$, we construct approximating functions $F$ in the class $C_\sigma^{(r,\omega)}$. Approximation by such functions on the set $E$ is analogous to approximation by polynomials on compacts. The analogy involves constructing a scale for measuring approximations and providing a constructive description of the class $H_\omega^r(E)$ in terms of the approximation rate, similar to that of polynomial approximation. Bibliography: 4 titles.
Received: 28.08.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 143, Issue 3, Pages 3149–3152
DOI: https://doi.org/10.1007/s10958-007-0198-y
Bibliographic databases:
UDC: 511.44
Language: Russian
Citation: O. V. Sil'vanovich, N. A. Shirokov, “Approximation by entire functions on subsets of a ray”, Analytical theory of numbers and theory of functions. Part 21, Zap. Nauchn. Sem. POMI, 337, POMI, St. Petersburg, 2006, 233–237; J. Math. Sci. (N. Y.), 143:3 (2007), 3149–3152
Citation in format AMSBIB
\Bibitem{SilShi06}
\by O.~V.~Sil'vanovich, N.~A.~Shirokov
\paper Approximation by entire functions on subsets of a ray
\inbook Analytical theory of numbers and theory of functions. Part~21
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 337
\pages 233--237
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl190}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2271965}
\zmath{https://zbmath.org/?q=an:1116.41014}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 3
\pages 3149--3152
\crossref{https://doi.org/10.1007/s10958-007-0198-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248157742}
Linking options:
  • https://www.mathnet.ru/eng/znsl190
  • https://www.mathnet.ru/eng/znsl/v337/p233
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :70
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024