Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 337, Pages 212–232 (Mi znsl189)  

This article is cited in 4 scientific papers (total in 4 papers)

On the Dirichlet series related to the cubic theta function

N. V. Proskurin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (265 kB) Citations (4)
References:
Abstract: The paper studies the function $L(\tau;\cdot)$ defined by the Dirichlet series
$$ L(\tau;s)=\sum_\nu\frac{\tau(\nu)}{\|\nu\|^s}, \quad s\in\mathbb C, $$
where $\tau(\nu)$ is the $\nu$th Fourier coefficient of the Kubota?Patterson cubic theta function. For this function, an exact and an approximate functional equations are derived. It is established that the function does not vanish in the halfplane $\operatorname{RE}s\ge 1.3533$ and has no singularities except for a simple pole at the point 5/6. Issues related to computing the coefficients $\tau(\nu)$ and values of the special functions arising in the approximate functional equation are considered. Bibliography: 11 titles.
Received: 22.05.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 143, Issue 3, Pages 3137–3148
DOI: https://doi.org/10.1007/s10958-007-0197-z
Bibliographic databases:
UDC: 517.3
Language: Russian
Citation: N. V. Proskurin, “On the Dirichlet series related to the cubic theta function”, Analytical theory of numbers and theory of functions. Part 21, Zap. Nauchn. Sem. POMI, 337, POMI, St. Petersburg, 2006, 212–232; J. Math. Sci. (N. Y.), 143:3 (2007), 3137–3148
Citation in format AMSBIB
\Bibitem{Pro06}
\by N.~V.~Proskurin
\paper On the Dirichlet series related to the cubic theta function
\inbook Analytical theory of numbers and theory of functions. Part~21
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 337
\pages 212--232
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl189}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2271964}
\zmath{https://zbmath.org/?q=an:1115.11056}
\elib{https://elibrary.ru/item.asp?id=9305281}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 3
\pages 3137--3148
\crossref{https://doi.org/10.1007/s10958-007-0197-z}
\elib{https://elibrary.ru/item.asp?id=13541347}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248181139}
Linking options:
  • https://www.mathnet.ru/eng/znsl189
  • https://www.mathnet.ru/eng/znsl/v337/p212
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :59
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024