|
Zapiski Nauchnykh Seminarov LOMI, 1976, Volume 58, Pages 40–47
(Mi znsl1885)
|
|
|
|
Existence of a solution of a difference scheme for one variational problem
Z. A. Vlasova, O. I. Nikolaev
Abstract:
The problem of minimizing the functional
$$
\int_a^b\varphi(x,y,y',y'')\,dx
$$
under the conditions
$$
\int_a^b\varphi(x,y,y',y'')\,dx
$$
is replaced by the problem of finding the vector $(y_1,y_2,\dots,y_{n-1})$ on which the sum
$$
\sum_{k=0}^nC_k\varphi\biggl(x_k,y_k,\frac{y_{k+1}-y_k}{h},\frac{y_{k+1}-2y_k+y_{k+1}}{h^2}\biggr)
$$
takes a minimal value. Under certain conditions on $\varphi$ and $C_k$ it is proved that a solution exists for the difference scheme constructed. The method of differentiation with respect to a parameter is used for the proof.
Citation:
Z. A. Vlasova, O. I. Nikolaev, “Existence of a solution of a difference scheme for one variational problem”, Computational methods and automatic programming, Zap. Nauchn. Sem. LOMI, 58, "Nauka", Leningrad. Otdel., Leningrad, 1976, 40–47; J. Soviet Math., 13:2 (1980), 218–224
Linking options:
https://www.mathnet.ru/eng/znsl1885 https://www.mathnet.ru/eng/znsl/v58/p40
|
Statistics & downloads: |
Abstract page: | 113 | Full-text PDF : | 66 |
|