Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1976, Volume 58, Pages 14–21 (Mi znsl1882)  

This article is cited in 1 scientific paper (total in 1 paper)

Finite-difference method for solving the first boundary-value problem for a second-order nonlinear ordinary differential equation with a divergent principal part

M. N. Yakovlev
Full-text PDF (573 kB) Citations (1)
Abstract: The approximation is studied of the first boundary-value problem for the equation
\begin{equation} -\dfrac{d}{dx}K\biggl(x,\dfrac{du}{dx}\biggr)+f(x,u)=0,\quad 0<x<1, \tag{1} \end{equation}
with boundary conditions
\begin{equation} u(0)=u(1)=0 \tag{2} \end{equation}
by difference boundary-value problems of form
\begin{gather} -[a(x,W_{\overline x})]_x+\varphi(x,W)=0,\quad x\in\omega_n, \tag{3} \\ W(0)=W(1)=0. \tag{4} \end{gather}
Theorems are established on the solvability of problem (3), (4). Theorems are proved on uniform convergence and on the order of uniform convergence. Here, as usual, boundedness is not assumed, but just the summability of the corresponding derivatives of the solutions of problem (1), (2). Also considered are singular boundary-value problems of form (1), (2), where uniform convergence with order h is proved under assumption of piecewise absolute continuity of the function $f(x,u(x))$.
English version:
Journal of Soviet Mathematics, 1980, Volume 13, Issue 2, Pages 195–201
DOI: https://doi.org/10.1007/BF01296233
Bibliographic databases:
UDC: 518.517.949.8
Language: Russian
Citation: M. N. Yakovlev, “Finite-difference method for solving the first boundary-value problem for a second-order nonlinear ordinary differential equation with a divergent principal part”, Computational methods and automatic programming, Zap. Nauchn. Sem. LOMI, 58, "Nauka", Leningrad. Otdel., Leningrad, 1976, 14–21; J. Soviet Math., 13:2 (1980), 195–201
Citation in format AMSBIB
\Bibitem{Yak76}
\by M.~N.~Yakovlev
\paper Finite-difference method for solving the first boundary-value problem for a second-order nonlinear ordinary differential equation with a divergent principal part
\inbook Computational methods and automatic programming
\serial Zap. Nauchn. Sem. LOMI
\yr 1976
\vol 58
\pages 14--21
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1882}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=471332}
\zmath{https://zbmath.org/?q=an:0428.65052|0354.65040}
\transl
\jour J. Soviet Math.
\yr 1980
\vol 13
\issue 2
\pages 195--201
\crossref{https://doi.org/10.1007/BF01296233}
Linking options:
  • https://www.mathnet.ru/eng/znsl1882
  • https://www.mathnet.ru/eng/znsl/v58/p14
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:1191
    Full-text PDF :207
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024