|
Zapiski Nauchnykh Seminarov LOMI, 1976, Volume 64, Pages 131–152
(Mi znsl1879)
|
|
|
|
This article is cited in 23 scientific papers (total in 23 papers)
Stabilization theorem for the Milnor $K_2$-functor
A. A. Suslin, M. S. Tulenbaev
Abstract:
Let $\Lambda$ be an associative ring. For every natural number $n$ there is a canonical homomorphism $\Psi_n\colon K_{2,n}(\Lambda)\to K_2(\lambda)$ where $K_2$ is the Milnor functor and $K_{2,n}(\lambda)$ the associated unstable $K$-group. Dennis and Vasershtein have proved that if $n$ is larger than the stable rank of $\Lambda$, $\Psi_n$is an epimorphism. It is proved in the article that if $n-1$ is greater than the stable rank of $\Lambda$, the homomorphism $\Psi_n$ is an isomorphism.
Citation:
A. A. Suslin, M. S. Tulenbaev, “Stabilization theorem for the Milnor $K_2$-functor”, Rings and modules, Zap. Nauchn. Sem. LOMI, 64, "Nauka", Leningrad. Otdel., Leningrad, 1976, 131–152; J. Soviet Math., 17:2 (1981), 1804–1819
Linking options:
https://www.mathnet.ru/eng/znsl1879 https://www.mathnet.ru/eng/znsl/v64/p131
|
Statistics & downloads: |
Abstract page: | 410 | Full-text PDF : | 199 |
|