|
Zapiski Nauchnykh Seminarov LOMI, 1976, Volume 64, Pages 69–79
(Mi znsl1873)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Series $\sum F(m)q^m$, where $F(m)$ is the number of odd classes of binary quadratic forms of determinant $-m$
E. P. Golubeva, O. M. Fomenko
Abstract:
Consideration of the analytic continuation of the Eisenstein series of weight $3/2$ for the group $\Gamma_0(4)$ leads to a new proof of Mordell's formula connecting the values $\chi(\omega)=\sum^\infty_{m=1}F(m)e^{\pi im\omega}$, $\operatorname{Im}\omega>0$, and $\chi(-\frac{1}{\omega})$. The behavior of the function $\chi(\omega)$for $\Gamma_0(4)$is examined by the same method.
Citation:
E. P. Golubeva, O. M. Fomenko, “Series $\sum F(m)q^m$, where $F(m)$ is the number of odd classes of binary quadratic forms of determinant $-m$”, Rings and modules, Zap. Nauchn. Sem. LOMI, 64, "Nauka", Leningrad. Otdel., Leningrad, 1976, 69–79; J. Soviet Math., 17:2 (1981), 1759–1766
Linking options:
https://www.mathnet.ru/eng/znsl1873 https://www.mathnet.ru/eng/znsl/v64/p69
|
Statistics & downloads: |
Abstract page: | 196 | Full-text PDF : | 70 |
|