Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 70, Pages 256–266 (Mi znsl1864)  

This article is cited in 2 scientific papers (total in 2 papers)

Solvability of the finite-difference equations of the implicit scheme for a nonlinear second-order parabolic equation

M. N. Yakovlev
Full-text PDF (696 kB) Citations (2)
Abstract: We consider the following initial–boundary-value difference problem \begin{eqation}
\begin{gather} \rho(t_i,x_j,u_{ij},\dfrac{u_{ij+1}-u_{ij-1}}{2h})\cdot\dfrac{u_{ij}-u_{i-1j}}{\tau}= a(t_i,x_j,u_{ij},\dfrac{u_{ij+1}-u_{ij-1}}{2h})\cdot \dfrac{u_{ij+1}-2u_{ij}+u_{ij-1}}{h^2}+b(t_i,x_j,u_{ij},\dfrac{u_{ij+1}-u_{ij-1}}{2h}), \quad i=1,\dots,m,\quad j=1,\dots,n \\ u_{0j}=\omega(x_j)\quad j=1,\dots,n \\ u_{i0}=u_{in+i}=0\quad i=1,\dots,m \\ x_j=jh;\quad t_i=i\tau\quad h=\dfrac{1}{n+1},\quad \tau=\dfrac{T}{m} \end{gather}
\end{eqation} which is the approximation of the corresponding problem for a differential equation. We assume that for $o<t\leqslant T$, $0<x<1$, $-\infty<u,p<=\infty$ the functions $\rho(t,x,u,p)$, $a(t,x,u,p)$ и $(t,x,u,p)$ are continuous and \begin{eqation}
\begin{gather*} \rho(t,x,u,p)>0,\quad a(t,x,u,p)\geqslant0 \\ |b(t,x,u,p)-b(t,x,u,0)|\leqslant\biggl[\dfrac{\sigma}{x}+\dfrac{\sigma_1}{1-x}+\dfrac{M}{2} \biggl(\dfrac{1}{x^y}+\dfrac{1}{(1-x)^y}\biggr)\biggr]p/a(t,x,u,p) \\ \sigma_1,\sigma\geqslant0,\quad M\geqslant0,\quad\sigma_1+\sigma\leqslant2,\quad0\leqslant y<1 \\ \dfrac{1}{u}\biggl[b(t,x,u,0)-b(t,x,0,0)\biggr]\leqslant\biggl[\dfrac{\alpha}{t}+l+\alpha_1\tau^\mu\biggr] \rho(t,x,u,p),\quad 0\leqslant\alpha<1,\quad \alpha_1\geqslant0,\quad 0\leqslant\mu<1 \\ |b(t,x,0,0)|\leqslant A(t)\rho(t,x,u,p). \end{gather*}
\end{eqation} Then, for $h^{1-y}M\leqslant M\leqslant3-\sigma_1-\sigma, 1-\alpha-\tau l-\alpha_1\tau^{1-\mu}>0$ the initial–boundary-value difference problem (1)–(3) is solvable. We also give various modifications and generalizations of the mentioned statement, related to various difference approximations of an initial-boundary-value problem for the equations
$$ \rho(t,x,u,\dfrac{\partial u}{\partial x})\dfrac{\partial u}{\partial t}=F\biggl(t,x,u,\dfrac{\partial u}{\partial x},\dfrac{d}{dx}K(t,x,\dfrac{\partial u}{\partial x})\biggr),\quad 0<t\leqslant T,\quad0<x<1 $$
and for a system of weakly connected equations of this type.
English version:
Journal of Soviet Mathematics, 1983, Volume 23, Issue 1, Pages 2081–2090
DOI: https://doi.org/10.1007/BF01093287
Bibliographic databases:
UDC: 518.517.949.8
Language: Russian
Citation: M. N. Yakovlev, “Solvability of the finite-difference equations of the implicit scheme for a nonlinear second-order parabolic equation”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 70, "Nauka", Leningrad. Otdel., Leningrad, 1977, 256–266; J. Soviet Math., 23:1 (1983), 2081–2090
Citation in format AMSBIB
\Bibitem{Yak77}
\by M.~N.~Yakovlev
\paper Solvability of the finite-difference equations of the implicit scheme for a nonlinear second-order parabolic equation
\inbook Computational methods and algorithms
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 70
\pages 256--266
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1864}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=657819}
\zmath{https://zbmath.org/?q=an:0515.65073|0432.65057}
\transl
\jour J. Soviet Math.
\yr 1983
\vol 23
\issue 1
\pages 2081--2090
\crossref{https://doi.org/10.1007/BF01093287}
Linking options:
  • https://www.mathnet.ru/eng/znsl1864
  • https://www.mathnet.ru/eng/znsl/v70/p256
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:143
    Full-text PDF :54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024