|
Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 70, Pages 256–266
(Mi znsl1864)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Solvability of the finite-difference equations of the implicit scheme for a nonlinear second-order parabolic equation
M. N. Yakovlev
Abstract:
We consider the following initial–boundary-value difference problem
\begin{eqation}
\begin{gather}
\rho(t_i,x_j,u_{ij},\dfrac{u_{ij+1}-u_{ij-1}}{2h})\cdot\dfrac{u_{ij}-u_{i-1j}}{\tau}=
a(t_i,x_j,u_{ij},\dfrac{u_{ij+1}-u_{ij-1}}{2h})\cdot
\dfrac{u_{ij+1}-2u_{ij}+u_{ij-1}}{h^2}+b(t_i,x_j,u_{ij},\dfrac{u_{ij+1}-u_{ij-1}}{2h}),
\quad i=1,\dots,m,\quad j=1,\dots,n
\\
u_{0j}=\omega(x_j)\quad j=1,\dots,n
\\
u_{i0}=u_{in+i}=0\quad i=1,\dots,m
\\
x_j=jh;\quad t_i=i\tau\quad h=\dfrac{1}{n+1},\quad \tau=\dfrac{T}{m}
\end{gather}
\end{eqation}
which is the approximation of the corresponding problem for a differential
equation. We assume that for $o<t\leqslant T$, $0<x<1$, $-\infty<u,p<=\infty$ the functions
$\rho(t,x,u,p)$, $a(t,x,u,p)$ и $(t,x,u,p)$ are continuous and
\begin{eqation}
\begin{gather*}
\rho(t,x,u,p)>0,\quad a(t,x,u,p)\geqslant0
\\
|b(t,x,u,p)-b(t,x,u,0)|\leqslant\biggl[\dfrac{\sigma}{x}+\dfrac{\sigma_1}{1-x}+\dfrac{M}{2}
\biggl(\dfrac{1}{x^y}+\dfrac{1}{(1-x)^y}\biggr)\biggr]p/a(t,x,u,p)
\\
\sigma_1,\sigma\geqslant0,\quad M\geqslant0,\quad\sigma_1+\sigma\leqslant2,\quad0\leqslant y<1
\\
\dfrac{1}{u}\biggl[b(t,x,u,0)-b(t,x,0,0)\biggr]\leqslant\biggl[\dfrac{\alpha}{t}+l+\alpha_1\tau^\mu\biggr]
\rho(t,x,u,p),\quad 0\leqslant\alpha<1,\quad \alpha_1\geqslant0,\quad 0\leqslant\mu<1
\\
|b(t,x,0,0)|\leqslant A(t)\rho(t,x,u,p).
\end{gather*}
\end{eqation}
Then, for $h^{1-y}M\leqslant M\leqslant3-\sigma_1-\sigma, 1-\alpha-\tau l-\alpha_1\tau^{1-\mu}>0$ the initial–boundary-value difference
problem (1)–(3) is solvable. We also give various modifications and generalizations
of the mentioned statement, related to various difference approximations
of an initial-boundary-value problem for the equations
$$
\rho(t,x,u,\dfrac{\partial u}{\partial x})\dfrac{\partial u}{\partial t}=F\biggl(t,x,u,\dfrac{\partial u}{\partial x},\dfrac{d}{dx}K(t,x,\dfrac{\partial u}{\partial x})\biggr),\quad 0<t\leqslant T,\quad0<x<1
$$
and for a system of weakly connected equations of this type.
Citation:
M. N. Yakovlev, “Solvability of the finite-difference equations of the implicit scheme for a nonlinear second-order parabolic equation”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 70, "Nauka", Leningrad. Otdel., Leningrad, 1977, 256–266; J. Soviet Math., 23:1 (1983), 2081–2090
Linking options:
https://www.mathnet.ru/eng/znsl1864 https://www.mathnet.ru/eng/znsl/v70/p256
|
Statistics & downloads: |
Abstract page: | 144 | Full-text PDF : | 54 |
|