Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 70, Pages 241–255 (Mi znsl1863)  

This article is cited in 2 scientific papers (total in 2 papers)

Uniform convergence of the implicit scheme of the finite-difference method for solving the first boundary-value problem for a nonlinear second-order parabolic equation

M. N. Yakovlev
Full-text PDF (914 kB) Citations (2)
Abstract: Let $u(t,x)$ be a solution of the first initial–boundary-value problem for the quasilinear parabolic equation
\begin{equation} \dfrac{\partial u}{\partial t}=a(t,x,u,\dfrac{\partial u}{\partial x})\dfrac{\partial^2u}{\partial x^2}+ b(t,x,u,\dfrac{\partial u}{\partial x}),\qquad 0<t\leqslant T,\quad 0<x<1 \tag{1} \end{equation}
with the initial condition
\begin{equation} u(0,x)=\omega(x),\quad 0<x<1 \tag{2} \end{equation}
and the boundary conditions
\begin{equation} u(t,0)=u(t,1)=0,\quad 0<t\leqslant T, \tag{3} \end{equation}
such that
$$ \biggl|\dfrac{\partial^4u}{\partial x^4}(t,x)\biggr|\leqslant C,\quad \biggl|\dfrac{\partial^2u}{\partial t^2}(t,x)\biggr|\leqslant\dfrac{c}{t^\sigma},\quad 0\leqslant\sigma<2 $$
Assume that the functions $a(t,x,u,p)$, $b(t,x,u,p)$ are smooth and in a small neighborhood of the solution under consideration. Then, the implicit scheme of the finite-difference method converges uniformly to the solution under consideration with the order$h^2+\varphi(\tau)$, under the condition that
\begin{equation} \varphi(\tau)\leqslant\beta h^\gamma,\quad \beta>0,\quad \gamma>1 \tag{4} \end{equation}
Here
$$ \varphi(\tau)= \begin{cases} \tau & \text{\rm{ при }}0\leqslant\sigma<1\\ \tau\ln\dfrac{T}{\tau} & \text{\rm{ при }}\sigma=1\\ \tau^{2-\sigma} & \text{\rm{ при }}1<\sigma<2. \end{cases} $$
One also considers convergence conditions when the relations (4) do not hold, convergence conditions for equations of the form
$$ \dfrac{\partial u}{\partial t}=F\biggl(t,x,u,\dfrac{\partial u}{\partial x},\dfrac{d}{dx}K(t,x,\dfrac{\partial u}{\partial x})\biggr) $$
and weakly connected systems of such equations.
English version:
Journal of Soviet Mathematics, 1983, Volume 23, Issue 1, Pages 2066–2080
DOI: https://doi.org/10.1007/BF01093286
Bibliographic databases:
UDC: 518.517.949.8
Language: Russian
Citation: M. N. Yakovlev, “Uniform convergence of the implicit scheme of the finite-difference method for solving the first boundary-value problem for a nonlinear second-order parabolic equation”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 70, "Nauka", Leningrad. Otdel., Leningrad, 1977, 241–255; J. Soviet Math., 23:1 (1983), 2066–2080
Citation in format AMSBIB
\Bibitem{Yak77}
\by M.~N.~Yakovlev
\paper Uniform convergence of the implicit scheme of the finite-difference method for solving the first boundary-value problem for a nonlinear second-order parabolic equation
\inbook Computational methods and algorithms
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 70
\pages 241--255
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1863}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=502078}
\zmath{https://zbmath.org/?q=an:0515.65087|0429.65107}
\transl
\jour J. Soviet Math.
\yr 1983
\vol 23
\issue 1
\pages 2066--2080
\crossref{https://doi.org/10.1007/BF01093286}
Linking options:
  • https://www.mathnet.ru/eng/znsl1863
  • https://www.mathnet.ru/eng/znsl/v70/p241
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024