Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 70, Pages 232–240 (Mi znsl1862)  

Uniform convergence of the method of lines in the case of the first boundary-value problem for a nonlinear second-order parabolic equation

M. N. Yakovlev
Abstract: Let $u(t,x)$ be a solution of the first initial–boundary-value problem for the nonlinear equation
$$ \dfrac{\partial u}{\partial t}=F\biggl(t,x,u,\dfrac{\partial u}{\partial x},\dfrac{\partial^2u}{\partial x^2}\biggr),\qquad 0<t\leqslant T,\quad 0<x<1 $$
with initial condition
$$ u(0,x)=\omega(x),\quad 0<x<1 $$
and boundary conditions $u(t,0)=u(t,1)=0$, $0<t\leqslant t$, such that $\biggl|\dfrac{\partial^4u}{\partial x^4}(t,x)\biggr|\leqslant C$. Assume that the function $F(t,x,u,p,r)$ is smooth and is such that
$$ \dfrac{1}{r-\overline{r}}\biggl[F(t,x,u,p,r)-F(t,x,u,p,\overline{r})\biggr]\geqslant\alpha>0 $$
in a small neighborhood of the solution under consideration. Then, the longitudinal scheme of the method of lines converges uniformly with order $h^2$ to the solution under consideration. One considers the case of less smooth solutions and of more general equations. One gives theorems which show explicit estimates for the step $h$, under which one can guarantee a nonlocal solvability of the Cauchy problem for systems of ordinary differential equations by the method of lines.
English version:
Journal of Soviet Mathematics, 1983, Volume 23, Issue 1, Pages 2057–2065
DOI: https://doi.org/10.1007/BF01093285
Bibliographic databases:
UDC: 518.517.949.8
Language: Russian
Citation: M. N. Yakovlev, “Uniform convergence of the method of lines in the case of the first boundary-value problem for a nonlinear second-order parabolic equation”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 70, "Nauka", Leningrad. Otdel., Leningrad, 1977, 232–240; J. Soviet Math., 23:1 (1983), 2057–2065
Citation in format AMSBIB
\Bibitem{Yak77}
\by M.~N.~Yakovlev
\paper Uniform convergence of the method of lines in the case of the first boundary-value problem for a nonlinear second-order parabolic equation
\inbook Computational methods and algorithms
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 70
\pages 232--240
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1862}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=502077}
\zmath{https://zbmath.org/?q=an:0515.65086|0429.65106}
\transl
\jour J. Soviet Math.
\yr 1983
\vol 23
\issue 1
\pages 2057--2065
\crossref{https://doi.org/10.1007/BF01093285}
Linking options:
  • https://www.mathnet.ru/eng/znsl1862
  • https://www.mathnet.ru/eng/znsl/v70/p232
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024