Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 337, Pages 134–164 (Mi znsl186)  

This article is cited in 5 scientific papers (total in 5 papers)

On approximating periodic functions using linear approximation methods

A. S. Zhuk, V. V. Zhuk

Saint-Petersburg State University
Full-text PDF (293 kB) Citations (5)
References:
Abstract: In the paper, a generalization of a known theorem by Hardy and Young is obtained; a formula interrelating the integral of a $2\pi$-periodic function over the period with the integral over the entire axis is established; new approximation characteristics for functions belonging to saturation classes of continuity modules of different orders for the spaces $L_p$ of periodic functions are provided, and some issues concerning approximation, in the uniform metric, of continuous periodic functions even with respect to each of their variables and having nonnegative Fourier coefficients are considered. Bibliography: 17 titles.
Received: 02.05.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 143, Issue 3, Pages 3090–3107
DOI: https://doi.org/10.1007/s10958-007-0194-2
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. S. Zhuk, V. V. Zhuk, “On approximating periodic functions using linear approximation methods”, Analytical theory of numbers and theory of functions. Part 21, Zap. Nauchn. Sem. POMI, 337, POMI, St. Petersburg, 2006, 134–164; J. Math. Sci. (N. Y.), 143:3 (2007), 3090–3107
Citation in format AMSBIB
\Bibitem{ZhuZhu06}
\by A.~S.~Zhuk, V.~V.~Zhuk
\paper On approximating periodic functions using linear approximation methods
\inbook Analytical theory of numbers and theory of functions. Part~21
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 337
\pages 134--164
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl186}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2271961}
\zmath{https://zbmath.org/?q=an:1125.42003}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 3
\pages 3090--3107
\crossref{https://doi.org/10.1007/s10958-007-0194-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248168189}
Linking options:
  • https://www.mathnet.ru/eng/znsl186
  • https://www.mathnet.ru/eng/znsl/v337/p134
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:457
    Full-text PDF :140
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024