Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 70, Pages 169–177 (Mi znsl1858)  

Use of a computer to find the number of regular pentagons that can simultaneously touch a given one

P. S. Pankov, S. L. Dolmatov
Abstract: Around an initial regular pentagon one describes a contour $L$ on which one introduces a measure $m$. One investigates the difference $S(M)=\dfrac17m(L)-m(L\cap M)$ where $M$ is a pentagon touching the initial one and congruent to it. The geometric part of the investigation reduces the proof of the inequality $S(M)<0$ for all $M$ to the proof of the negativity of two effectively computable functions $F(u,v)$ and $G(v)$ in the compact domain of the variation of the arguments. By the method of demonstrative computations, one calculates on a computer the values of these functions at the nodes of a rectangular net of the domain of the variation of the arguments by taking into account the monotonicity and one estimates the computational error. The results of the computation show that we have the inequality $S(M)<0$, from where it follows that the desired number is equal to six.
English version:
Journal of Soviet Mathematics, 1983, Volume 23, Issue 1, Pages 2004–2011
DOI: https://doi.org/10.1007/BF01093281
Bibliographic databases:
UDC: 681.3.51
Language: Russian
Citation: P. S. Pankov, S. L. Dolmatov, “Use of a computer to find the number of regular pentagons that can simultaneously touch a given one”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 70, "Nauka", Leningrad. Otdel., Leningrad, 1977, 169–177; J. Soviet Math., 23:1 (1983), 2004–2011
Citation in format AMSBIB
\Bibitem{PanDol77}
\by P.~S.~Pankov, S.~L.~Dolmatov
\paper Use of a computer to find the number of regular pentagons that can simultaneously touch a given one
\inbook Computational methods and algorithms
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 70
\pages 169--177
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1858}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=500522}
\zmath{https://zbmath.org/?q=an:0515.51019|0415.51012}
\transl
\jour J. Soviet Math.
\yr 1983
\vol 23
\issue 1
\pages 2004--2011
\crossref{https://doi.org/10.1007/BF01093281}
Linking options:
  • https://www.mathnet.ru/eng/znsl1858
  • https://www.mathnet.ru/eng/znsl/v70/p169
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:180
    Full-text PDF :50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024