|
Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 70, Pages 161–168
(Mi znsl1857)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Strong capacity-estimates for “fractional” norms
V. G. Maz'ya
Abstract:
It is proved that for all fractional $l$ the integral $\int_0^\infty(p,l)-\operatorname{cap}(M_t)\,dt^p$ is majorized by the $p$-th power norm of the function $u$ in the space $Z_p^l(R^n)$ (here $M_t=\{x:|u(x)|\geqslant t\}$ and $(p,l)-\operatorname{cap}(e)$ is the $(p,l)$-capacity of the compactum $e\subset R^n$). Similar results are obtained for the spaces $W_p^l(R^n)$ and the spaces of M. Riesz and Bessel potentials. One considers consequences regarding imbedding theorems of “fractional” spaces in $Z_q(d,\mu)$, where $\mu$ is a nonnegative measure in $R^n$. One considers specially the case $p=1$.
Citation:
V. G. Maz'ya, “Strong capacity-estimates for “fractional” norms”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 70, "Nauka", Leningrad. Otdel., Leningrad, 1977, 161–168; J. Soviet Math., 23:1 (1983), 1997–2003
Linking options:
https://www.mathnet.ru/eng/znsl1857 https://www.mathnet.ru/eng/znsl/v70/p161
|
Statistics & downloads: |
Abstract page: | 221 | Full-text PDF : | 61 |
|