|
Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 70, Pages 103–123
(Mi znsl1854)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Solution of the eigenvalue problem for a regular pencil $\lambda A_0-A_1$ with singular matrices
V. N. Kublanovskaya, T. Ya. Kon'kova
Abstract:
One considers the generalized eigenvalue problem
\begin{equation}
(A_0\lambda-A_1)x=0,
\end{equation}
when one or both matrices $A_0$, $A_1$ are singular and ker $\operatorname{ker}A_0\cap\operatorname{ker}A_1=\varnothing$ is the empty set. With the aid of the normalized process, the solving of problem (1) reduces to the solving of the eigenvalue problem of a constant matrix of order $r=\min(r_0,r_1)$, where $r_0$, $r_1$ are the ranks of the matrices $A_0$, $A_1$, which are determined at the normalized decomposition of the matrices. One gives an Algol program which performs the presented algorithm and testing examples.
Citation:
V. N. Kublanovskaya, T. Ya. Kon'kova, “Solution of the eigenvalue problem for a regular pencil $\lambda A_0-A_1$ with singular matrices”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 70, "Nauka", Leningrad. Otdel., Leningrad, 1977, 103–123; J. Soviet Math., 23:1 (1983), 1950–1965
Linking options:
https://www.mathnet.ru/eng/znsl1854 https://www.mathnet.ru/eng/znsl/v70/p103
|
Statistics & downloads: |
Abstract page: | 244 | Full-text PDF : | 155 |
|