Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 70, Pages 76–88 (Mi znsl1852)  

This article is cited in 1 scientific paper (total in 1 paper)

An application of a multipoint differential-difference scheme to a boundary-value problem

A. P. Kubanskaya
Full-text PDF (685 kB) Citations (1)
Abstract: For the boundary-value problem
\begin{gather} \Delta U(x,y)=f(x,y),\quad -a<x<a,\quad 0<y<b, \\ \begin{cases} U(-a,y)=\gamma_1(y), & U(x,0)=\gamma_3(x), \\ U(a,y)=\gamma_2(y), & U(x,b)=\gamma_4(x) \end{cases} \end{gather}
we construct a scheme of the method of lines with a central-difference approximation of the derivative $\dfrac{\partial^2U}{\partial y^2}$ for any odd pattern. In particular cases we investigate the behavior at the net refinement of the direct solution of the boundary-value problem for the determination of the difference between the approximate solution obtained by the method of lines and the exact solution of the problem (1), (2). We also consider some modifications of the method of lines: the number of the lines of the net is taken to be equal to that of the pattern. We give an estimate for the norm of the difference between the approximate solution obtained by this method and the exact solution of the problem (1), (2).
English version:
Journal of Soviet Mathematics, 1983, Volume 23, Issue 1, Pages 1929–1938
DOI: https://doi.org/10.1007/BF01093275
Bibliographic databases:
UDC: 518.517.944/947
Language: Russian
Citation: A. P. Kubanskaya, “An application of a multipoint differential-difference scheme to a boundary-value problem”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 70, "Nauka", Leningrad. Otdel., Leningrad, 1977, 76–88; J. Soviet Math., 23:1 (1983), 1929–1938
Citation in format AMSBIB
\Bibitem{Kub77}
\by A.~P.~Kubanskaya
\paper An application of a multipoint differential-difference scheme to a boundary-value problem
\inbook Computational methods and algorithms
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 70
\pages 76--88
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1852}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=520164}
\zmath{https://zbmath.org/?q=an:0515.65085|0429.65105}
\transl
\jour J. Soviet Math.
\yr 1983
\vol 23
\issue 1
\pages 1929--1938
\crossref{https://doi.org/10.1007/BF01093275}
Linking options:
  • https://www.mathnet.ru/eng/znsl1852
  • https://www.mathnet.ru/eng/znsl/v70/p76
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024