Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 70, Pages 7–10 (Mi znsl1848)  

A gap in the energy spectrum of the one-dimensional Dirac operator

L. A. Bordag
Abstract: One considers the one-dimensional Dirac operator with a slowly oscillating potential
\begin{equation} H=\begin{pmatrix} 0 & 1\\ -1 &0 \end{pmatrix}\dfrac{d}{dx}+q\begin{pmatrix} \cos Z(x) & \sin Z(x)\\ \sin Z(x) & -\cos Z(x)\end{pmatrix},\quad x\in(-\infty,\infty),\quad q-\mathrm{const}, \end{equation}
where $Z(x)\in C^1(\mathbf R^1)$ and $Z(x)\underset{x\to\pm\infty}\to C\pm|x|^\alpha$, $0<\alpha<1$, $C\pm-\mathrm{const}$. The following statement holds. The double absolutely continuous spectrum of the operator (1) fills the intervals $(-\inftu,-|q|)$, $(|q|,\infty)$. The interval $(-|q|,|q|)$ is free from spectrum. The operator has a simple eigenvalue only for $\operatorname{sign}C_+=\operatorname{sign}C_-$, situated either at the point (under the condition $C_+>0$) or at the point $\lambda=-|q|$ (under the condition). The proof is based on the investigation of the coordinate asytnptotics of the corresponding equation.
English version:
Journal of Soviet Mathematics, 1983, Volume 23, Issue 1, Pages 1875–1877
DOI: https://doi.org/10.1007/BF01093271
Bibliographic databases:
UDC: 517.9, 517.948
Language: Russian
Citation: L. A. Bordag, “A gap in the energy spectrum of the one-dimensional Dirac operator”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 70, "Nauka", Leningrad. Otdel., Leningrad, 1977, 7–10; J. Soviet Math., 23:1 (1983), 1875–1877
Citation in format AMSBIB
\Bibitem{Bor77}
\by L.~A.~Bordag
\paper A gap in the energy spectrum of the one-dimensional Dirac operator
\inbook Computational methods and algorithms
\serial Zap. Nauchn. Sem. LOMI
\yr 1977
\vol 70
\pages 7--10
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1848}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=499815}
\zmath{https://zbmath.org/?q=an:0517.47029|0451.47061}
\transl
\jour J. Soviet Math.
\yr 1983
\vol 23
\issue 1
\pages 1875--1877
\crossref{https://doi.org/10.1007/BF01093271}
Linking options:
  • https://www.mathnet.ru/eng/znsl1848
  • https://www.mathnet.ru/eng/znsl/v70/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024