|
Zapiski Nauchnykh Seminarov LOMI, 1977, Volume 70, Pages 7–10
(Mi znsl1848)
|
|
|
|
A gap in the energy spectrum of the one-dimensional Dirac operator
L. A. Bordag
Abstract:
One considers the one-dimensional Dirac operator with a slowly oscillating potential
\begin{equation}
H=\begin{pmatrix}
0 & 1\\
-1 &0
\end{pmatrix}\dfrac{d}{dx}+q\begin{pmatrix}
\cos Z(x) & \sin Z(x)\\
\sin Z(x) & -\cos Z(x)\end{pmatrix},\quad
x\in(-\infty,\infty),\quad q-\mathrm{const},
\end{equation}
where $Z(x)\in C^1(\mathbf R^1)$ and $Z(x)\underset{x\to\pm\infty}\to C\pm|x|^\alpha$, $0<\alpha<1$, $C\pm-\mathrm{const}$. The following statement holds. The double absolutely continuous spectrum of the operator (1) fills the intervals $(-\inftu,-|q|)$, $(|q|,\infty)$. The interval $(-|q|,|q|)$ is free from spectrum. The operator has a simple eigenvalue only for $\operatorname{sign}C_+=\operatorname{sign}C_-$, situated either at the point (under the condition $C_+>0$) or at the point $\lambda=-|q|$ (under the condition). The proof is based on the investigation of the coordinate asytnptotics of the corresponding equation.
Citation:
L. A. Bordag, “A gap in the energy spectrum of the one-dimensional Dirac operator”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 70, "Nauka", Leningrad. Otdel., Leningrad, 1977, 7–10; J. Soviet Math., 23:1 (1983), 1875–1877
Linking options:
https://www.mathnet.ru/eng/znsl1848 https://www.mathnet.ru/eng/znsl/v70/p7
|
Statistics & downloads: |
Abstract page: | 150 | Full-text PDF : | 53 |
|