Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1978, Volume 80, Pages 249–262 (Mi znsl1847)  

Uniform convergence of the implicit difference scheme of a nonlinear boundary-value problem for a second-order nonlinear parabolic equation

M. N. Yakovlev
Abstract: The nonlinear boundary-value problem for the parabolic equation
\begin{gather} \dfrac{\partial u}{\partial t}=F(t,x,u,\dfrac{\partial u}{\partial x},\dfrac{\partial^2u}{\partial x^2})\quad 0<t\leqslant T,\quad 0\leqslant x<1 \tag{1} \\ u(0,x)=\omega(x),\quad 0<x\leqslant1 \tag{2} \\ \dfrac{\partial u(t,0)}{\partial x}=\varphi(t,u(t,0)),\quad u(t,1)=0,\quad 0<t\leqslant T \tag{3} \end{gather}
is approximated by the boundary-value difference problem
\begin{gather} P_{i0}(u_{ij})=\dfrac{u_{i0}-u_{i-1,0}}{\tau}-F(t_1,0,u_{i0},\varphi(t_i,u_{i0}),\quad \dfrac{2}{h}\biggl[\dfrac{u_{i1}-u_{i0}}{h}-\varphi(t_i,u_{i0})\biggr]\quad i=1,\dots,m \tag{4} \\ P_{ij}(u_{ij})=\dfrac{u_{ij}-u_{i-1,j}}{\tau}-F(t_i,x_j,\delta u_{ij},\Delta u_{ij}),\quad i=1,2,\dots,m,\quad j=1,\dots,n \tag{5} \\ u_{0j}=\omega_j\quad j=0,1,\dots,n;\quad u_{i,n+1}=0\quad i=1,\dots,m \tag{6} \\ \delta u_{ij}=\dfrac{1}{2h}[u_{i,j+1}-u_{i,j-1}],\quad \Delta u_{ij}=\dfrac{1}{h^2}[u_{i,j+1}-2u_{ij}+u_{i,j-1}]. \tag{7} \end{gather}
Under certain assumptions on the solutions of the original problem and functions $F$ and $\varphi$, for small $\tau$ and $h$ we prove the existence of a solution of problem (4)–(6) and derive a bound on the approximation error. Under certain restrictions on the steps $h$ and $\tau$ and the functions $F$ and $\varphi$, we prove that the problem (4)–(6) has a nonnegative solution.
English version:
Journal of Soviet Mathematics, 1985, Volume 28, Issue 3, Pages 447–457
DOI: https://doi.org/10.1007/BF02104315
Bibliographic databases:
UDC: 518.517.949.8
Language: Russian
Citation: M. N. Yakovlev, “Uniform convergence of the implicit difference scheme of a nonlinear boundary-value problem for a second-order nonlinear parabolic equation”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 80, "Nauka", Leningrad. Otdel., Leningrad, 1978, 249–262; J. Soviet Math., 28:3 (1985), 447–457
Citation in format AMSBIB
\Bibitem{Yak78}
\by M.~N.~Yakovlev
\paper Uniform convergence of the implicit difference scheme of a nonlinear boundary-value problem for a second-order nonlinear parabolic equation
\inbook Computational methods and algorithms
\serial Zap. Nauchn. Sem. LOMI
\yr 1978
\vol 80
\pages 249--262
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1847}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=532346}
\zmath{https://zbmath.org/?q=an:0559.65075|0443.65072}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 28
\issue 3
\pages 447--457
\crossref{https://doi.org/10.1007/BF02104315}
Linking options:
  • https://www.mathnet.ru/eng/znsl1847
  • https://www.mathnet.ru/eng/znsl/v80/p249
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024