Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1978, Volume 80, Pages 125–166 (Mi znsl1841)  

The constant factor in error estimates of the variational-difference approximation

S. G. Mikhlin
Abstract: Let $U\in W_p^{(2s)}(0,1)$ and let the original functions $\omega_{q,s}(x)$, $0\leqslant q\leqslant s-1$ vanish outside the interval $[0,2]$, while on each of the intervals $(0,1)$ and $(1,2)$ they are polynomials of degree $2s-1$. Let
\begin{equation} U^h(x)=\sum_{q=0}^{2s-1}\sum_{j=-1}^{2n-1}h^2U^{(q)}((j+1)h)\omega_{q,s} \biggl(\dfrac{x}{h}-j\biggr),\quad h=\dfrac{1}{2n}. \tag{1} \end{equation}
Then, as we know,
\begin{equation} \|U-U^h\|_{l_p(\overline{s})}\leqslant C(s,\overline{s})h^{2s-\overline{s}}\|U^{(2s)}\|_{L_p(0,1)}\quad \overline{s}\leqslant s; \tag{2} \end{equation}
similar results were also obtained for functions of many variables. In this article we derive bounds on the polynomials $\sigma_{q,s}(t)=\omega_{q,s}(t+1)$, $0\leqslant t\leqslant1$ and their derivatives of order $\leqslant s$ in the metrics $C$ and $L_p$; our bounds prove to be essentially better than Markovian. A bound on $C(s,\overline{s})$ in inequality (2) is obtained. In the many-variable case we consider the approximation of functions from the classes $C(\Omega)$ and $W_p^{(2s)}(\Omega)$ by functions $U^t$ analogous to the functions (1); the original functions are obtained by multiplying one-dimensional piecewise-polynomial original functions. For the functions of the class $W_p^{(2s)}(\Omega)$ the corresponding constant $C(s,\overline{s})$ depends on two additional quantities, which are called here the averaging constant and the extension constant. An estimate of the “averaging constant” is obtained; the “extension constant” is estimated for the Hestenes extension.
English version:
Journal of Soviet Mathematics, 1985, Volume 28, Issue 3, Pages 360–386
DOI: https://doi.org/10.1007/BF02104309
Bibliographic databases:
UDC: 518.517
Language: Russian
Citation: S. G. Mikhlin, “The constant factor in error estimates of the variational-difference approximation”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 80, "Nauka", Leningrad. Otdel., Leningrad, 1978, 125–166; J. Soviet Math., 28:3 (1985), 360–386
Citation in format AMSBIB
\Bibitem{Mik78}
\by S.~G.~Mikhlin
\paper The constant factor in error estimates of the variational-difference approximation
\inbook Computational methods and algorithms
\serial Zap. Nauchn. Sem. LOMI
\yr 1978
\vol 80
\pages 125--166
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=532341}
\zmath{https://zbmath.org/?q=an:0557.41017|0447.41007}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 28
\issue 3
\pages 360--386
\crossref{https://doi.org/10.1007/BF02104309}
Linking options:
  • https://www.mathnet.ru/eng/znsl1841
  • https://www.mathnet.ru/eng/znsl/v80/p125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024