|
Zapiski Nauchnykh Seminarov LOMI, 1978, Volume 80, Pages 117–124
(Mi znsl1840)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Minimization of the maximum deviation with preemption
N. B. Lebedinskaya
Abstract:
We solve the scheduling problem to minimize the maximum deviation of the job completion times from the respective deadlines, with the starting time at an integer point in the interval $[t_1,t_2]$. It is shown that for an arbitrary set of jobs $Z$. the optimal-schedule penalty function $F_Z(t)$ (as a function of the integer argument $t$) is such that
$\Delta F_Z(t)=
\begin{cases}
-1, & t\in(-\infty,a(Z)-1],\\
0, & t\in[a(Z),b(Z)-1],\\
+1, & t\in[b(Z),+\infty)
\end{cases}$
for some integer $a(Z)\leqslant b(Z)$. If $a(Z)$ and $b(Z)$ coincide, the function $\Delta F_Z(t)$ has no zero values. An optimal scheduling algorithm is proposed which requires $C\cdot K\bigl(\max_i\{D_i\}-\min_i\{d_i\}+\sum_1^kV_i\bigr)$ computer operations.
Citation:
N. B. Lebedinskaya, “Minimization of the maximum deviation with preemption”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 80, "Nauka", Leningrad. Otdel., Leningrad, 1978, 117–124; J. Soviet Math., 28:3 (1985), 354–359
Linking options:
https://www.mathnet.ru/eng/znsl1840 https://www.mathnet.ru/eng/znsl/v80/p117
|
Statistics & downloads: |
Abstract page: | 193 | Full-text PDF : | 87 |
|