Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1978, Volume 80, Pages 83–97 (Mi znsl1838)  

This article is cited in 1 scientific paper (total in 2 paper)

Spectral problem for polynomial pencils of matrices

V. N. Kublanovskaya
Abstract: Let
\begin{gather} D(\lambda)=\lambda^tA_0+\lambda^{t-1}A_1+\dots+A_t \end{gather}
be a polynomial pencil of $m\times n$ matrices of rank $r$. The spectral problem for the pencil (1) is the problem to solve the equations
\begin{gather} D(\lambda)u=0\text{\rm{ и }}D^T(\lambda)v=0. \tag{2} \end{gather}

We propose an algorithm which allows to reduce the spectral problem for an arbitrary polynomial pencil of degree $t\geqslant1$ to the spectral problem for a linear pencil of larger dimension but of the same type as the initial pencil. In the case of a linear pencil of full column rank we indicate a new algorithm for the isolation of regular blocks.
For the solution of the partial eigenvalue problem of a polynomial pencil (1) of full column rank we propose an algorithm which allows the computation of eigenvalues by means of scalar equations, using the methods of Muller, Newton, et al. We also indicate a method to compute the eigenvectors of (1) corresponding to isolated eigenvalues.
English version:
Journal of Soviet Mathematics, 1985, Volume 28, Issue 3, Pages 330–340
DOI: https://doi.org/10.1007/BF02104306
Bibliographic databases:
UDC: 518.512.86
Language: Russian
Citation: V. N. Kublanovskaya, “Spectral problem for polynomial pencils of matrices”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 80, "Nauka", Leningrad. Otdel., Leningrad, 1978, 83–97; J. Soviet Math., 28:3 (1985), 330–340
Citation in format AMSBIB
\Bibitem{Kub78}
\by V.~N.~Kublanovskaya
\paper Spectral problem for polynomial pencils of matrices
\inbook Computational methods and algorithms
\serial Zap. Nauchn. Sem. LOMI
\yr 1978
\vol 80
\pages 83--97
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1838}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=532338}
\zmath{https://zbmath.org/?q=an:0559.65022|0434.65019}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 28
\issue 3
\pages 330--340
\crossref{https://doi.org/10.1007/BF02104306}
Linking options:
  • https://www.mathnet.ru/eng/znsl1838
  • https://www.mathnet.ru/eng/znsl/v80/p83
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024