Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1978, Volume 80, Pages 66–82 (Mi znsl1837)  

A multipoint finite-difference scheme for the problem of bending of rectangular orthotropic plates with freely supported edges: Construction and convergence estimate

A. P. Kubanskaya
Abstract: The boundary-value problem
\begin{gather*} D_1\dfrac{\partial^4w}{\partial x^4}+2D_2\dfrac{\partial^4w}{\partial x^2\partial y^2}+D_3\dfrac{\partial^4w}{\partial y^4}=f(x,y) \\ W|_{y=0;b}=0,\quad\dfrac{\partial^2w}{\partial y^2}|_{y=0'b}=0;\quad W|_{x=-a;a}=0,\quad \dfrac{\partial^2w}{\partial y^2}|_{x=-a'a}=0 \end{gather*}
of static deflection of a rectangular orthotropic plate is replaced with a finite-difference problem. The rectangle $[-a\leqslant x\leqslant a, 0\leqslant y\leqslant b]$ is partitioned into a mesh with step $h$ in the direction $y$ and $h_1$, in the direction $x$; second derivatives with respect to $y$ and $x$ are replaced with multipoint approximations using the templates $2p+1$, $2p_1+1$ (where $p$ and $p_1$ are arbitrary natural numbers) with errors $O(h^{2p})$, $O(h^{2p_1})$; the fourth-order derivatives are replaced with approximations using the templates $4p+1$ and $4p_1+1$ with the same errors. The finite-difference system of linear algebraic equations is transformed into a decomposable system. The convergence of the proposed method is estimated.
English version:
Journal of Soviet Mathematics, 1985, Volume 28, Issue 3, Pages 319–329
DOI: https://doi.org/10.1007/BF02104305
Bibliographic databases:
UDC: 518.517.944, 518.517.947
Language: Russian
Citation: A. P. Kubanskaya, “A multipoint finite-difference scheme for the problem of bending of rectangular orthotropic plates with freely supported edges: Construction and convergence estimate”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 80, "Nauka", Leningrad. Otdel., Leningrad, 1978, 66–82; J. Soviet Math., 28:3 (1985), 319–329
Citation in format AMSBIB
\Bibitem{Kub78}
\by A.~P.~Kubanskaya
\paper A multipoint finite-difference scheme for the problem of bending of rectangular orthotropic plates with freely supported edges: Construction and convergence estimate
\inbook Computational methods and algorithms
\serial Zap. Nauchn. Sem. LOMI
\yr 1978
\vol 80
\pages 66--82
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1837}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=532337}
\zmath{https://zbmath.org/?q=an:0558.73071|0445.73073}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 28
\issue 3
\pages 319--329
\crossref{https://doi.org/10.1007/BF02104305}
Linking options:
  • https://www.mathnet.ru/eng/znsl1837
  • https://www.mathnet.ru/eng/znsl/v80/p66
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024