Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1978, Volume 80, Pages 5–29 (Mi znsl1834)  

Stability and length of computations in the variational-difference method

Yu. K. Dem'yanovich
Abstract: The article considers a stable algorithm for computing the matrix and the righthand side of a variational-difference system of equations for one-dimensional nonsingular problems with a differential operator of order $2k$. Since usually such systems are $O(h^{-2k})$ conditioned, an error $\varepsilon$ in the coefficients in general leads to an asymptotic error $\varepsilon O(h^{-2k})$ in the solution of the system. A matrix subspace is identified in which an error $\varepsilon$ leads to an error $C_\varepsilon$ in the solution of the system (in the energy norm) the constant $C$ is independent of $h$), and then an algorithm is proposed which leaves the matrix computation error in this subspace. An approximate solution is represented as a sequence (a “word” ) of elementary arithmetic operations, and a bound on the computation length is derived. A measure of the computation length is a nonnegative functional defined on the set of words of some alphabet which has certain desirable properties. Particular instances of this functional include the number of operations, the weighted average number of macroinstructions of different types, the computation time, etc.
English version:
Journal of Soviet Mathematics, 1985, Volume 28, Issue 3, Pages 275–293
DOI: https://doi.org/10.1007/BF02104302
Bibliographic databases:
UDC: 518.517.944, 518.517.947
Language: Russian
Citation: Yu. K. Dem'yanovich, “Stability and length of computations in the variational-difference method”, Computational methods and algorithms, Zap. Nauchn. Sem. LOMI, 80, "Nauka", Leningrad. Otdel., Leningrad, 1978, 5–29; J. Soviet Math., 28:3 (1985), 275–293
Citation in format AMSBIB
\Bibitem{Dem78}
\by Yu.~K.~Dem'yanovich
\paper Stability and length of computations in the variational-difference method
\inbook Computational methods and algorithms
\serial Zap. Nauchn. Sem. LOMI
\yr 1978
\vol 80
\pages 5--29
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1834}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=532334}
\zmath{https://zbmath.org/?q=an:0559.65074|0443.65071}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 28
\issue 3
\pages 275--293
\crossref{https://doi.org/10.1007/BF02104302}
Linking options:
  • https://www.mathnet.ru/eng/znsl1834
  • https://www.mathnet.ru/eng/znsl/v80/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024