Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 337, Pages 23–34 (Mi znsl180)  

This article is cited in 1 scientific paper (total in 1 paper)

The region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. III

E. G. Goluzina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (213 kB) Citations (1)
References:
Abstract: The paper studies the region of values $D_{m,n}(T)$ of the system $\{f(z_1),\ldots,f(z_m),f(r_1),\ldots,f(r_n)\}$, where $m\geqslant1$; $n>1$; $z_j$, $j=1,\ldots,m$, are arbitrary fixed points of the disk $U=\{z;|z|<1\}$ with $\operatorname{Im}z_j\ne0$, $j=1,2,\dots,m$; $r_j$, $0<r_j<1$, $j=1,2,\dots,n$, are fixed; $f\in T$, and the class $T$ consists of functions $f(z)=z+c_2z^2+\dots$ regular in the disk $U$ and satisfying the condition $\operatorname{Im}f(z)\cdot\operatorname{Im}z>0$ for $\operatorname{Im}z\ne0$, $z\in U$. An algebraic characterization of the set $D_{m,n}(T)$ in terms of nonnegative-definite Hermitian forms is provided, and all the boundary functions are described. As an implication, the region of values of $f(z_1)$ in the subclass of functions $f\in T$ with prescribed values $f(r_j)$ ($j=1,2,3$) is determined. Bibliography: 12 titles.
Received: 12.05.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 143, Issue 3, Pages 3023–3029
DOI: https://doi.org/10.1007/s10958-007-0188-0
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: E. G. Goluzina, “The region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. III”, Analytical theory of numbers and theory of functions. Part 21, Zap. Nauchn. Sem. POMI, 337, POMI, St. Petersburg, 2006, 23–34; J. Math. Sci. (N. Y.), 143:3 (2007), 3023–3029
Citation in format AMSBIB
\Bibitem{Gol06}
\by E.~G.~Goluzina
\paper The region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions.~III
\inbook Analytical theory of numbers and theory of functions. Part~21
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 337
\pages 23--34
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl180}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2271955}
\zmath{https://zbmath.org/?q=an:1123.30003}
\elib{https://elibrary.ru/item.asp?id=9305272}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 3
\pages 3023--3029
\crossref{https://doi.org/10.1007/s10958-007-0188-0}
\elib{https://elibrary.ru/item.asp?id=13548724}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248158733}
Linking options:
  • https://www.mathnet.ru/eng/znsl180
  • https://www.mathnet.ru/eng/znsl/v337/p23
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :38
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024