|
Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 114, Pages 174–179
(Mi znsl1776)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Some recurrence relations in finite topologies
V. I. Rodionov
Abstract:
In a number of papers (see, e.g., RZhMat, 1977, 11B586) there is given for the number $T_0(n)$ of labeled topologies on $n$ points satisfying the $T_0$ separation axiom the formula
$$
T_0(n)=\sum\dfrac{n!}{p_1!\dots p_k!}V(p_1,\dots,p_k),
$$
where the summation extends over all ordered sets $(p_1,\dots,p_k)$ of natural numbers such that $p_1+\dots+p_k=n$. In the present paper there is found a relation for calculating, when $n\geqslant2$, the sum of all terms in this formula for which $p_2=1$ in terms of the values $V(q_1,\dots,q_t)$ with $q_1+\dots+q_t\leqslant n-2$. This permits the determination (with the aid of a computer) of the new value
$$
T_0(12)=414\,864\,951\,055\,853\,499.
$$
Citation:
V. I. Rodionov, “Some recurrence relations in finite topologies”, Modules and algebraic groups, Zap. Nauchn. Sem. LOMI, 114, "Nauka", Leningrad. Otdel., Leningrad, 1982, 174–179; J. Soviet Math., 27:4 (1984), 2963–2968
Linking options:
https://www.mathnet.ru/eng/znsl1776 https://www.mathnet.ru/eng/znsl/v114/p174
|
Statistics & downloads: |
Abstract page: | 235 | Full-text PDF : | 57 |
|