Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 114, Pages 62–76 (Mi znsl1767)  

This article is cited in 7 scientific papers (total in 7 papers)

Net subgroups of Chevalley groups. II. Gauss decomposition

N. A. Vavilov, E. B. Plotkin
Abstract: This paper is a continuation of RZhMat 1980, 5A439, where there was introduced the subgroup $\Gamma(\sigma)$ of the Chevalley group $G(\Phi, R)$ of type $\Phi$ over a commutative ring $R$ that corresponds to a net $\sigma$, i.e., to a set $\sigma=(\sigma_\alpha)$, $\alpha\in\Phi$, of ideals $\sigma_\alpha$ of $R$ such that $\sigma_\alpha\sigma_\beta\subseteq\sigma_{\alpha+\beta}$ whenever $\alpha,\beta,\alpha+\beta\in\Phi$. It is proved that if the ring $R$ is semilocal, then $\Gamma(\sigma)$ coincides with the group $\Gamma_0(\sigma)$ considered earlier in RZhMat 1976, 10A151; 1977, 10A301; 1978, 6A476. For this purpose there is constructed a decomposition of $\Gamma(\sigma)$ into a product of unipotent subgroups and a torus. Analogous results are obtained for sub-radical nets over an arbitrary commutative ring.
English version:
Journal of Soviet Mathematics, 1984, Volume 27, Issue 4, Pages 2874–2885
DOI: https://doi.org/10.1007/BF01410741
Bibliographic databases:
UDC: 513.6
Language: Russian
Citation: N. A. Vavilov, E. B. Plotkin, “Net subgroups of Chevalley groups. II. Gauss decomposition”, Modules and algebraic groups, Zap. Nauchn. Sem. LOMI, 114, "Nauka", Leningrad. Otdel., Leningrad, 1982, 62–76; J. Soviet Math., 27:4 (1984), 2874–2885
Citation in format AMSBIB
\Bibitem{VavPlo82}
\by N.~A.~Vavilov, E.~B.~Plotkin
\paper Net subgroups of Chevalley groups.~II. Gauss decomposition
\inbook Modules and algebraic groups
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 114
\pages 62--76
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1767}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=669560}
\zmath{https://zbmath.org/?q=an:0548.20035|0499.20033}
\transl
\jour J. Soviet Math.
\yr 1984
\vol 27
\issue 4
\pages 2874--2885
\crossref{https://doi.org/10.1007/BF01410741}
Linking options:
  • https://www.mathnet.ru/eng/znsl1767
  • https://www.mathnet.ru/eng/znsl/v114/p62
    Cycle of papers
    This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024