|
Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 114, Pages 37–49
(Mi znsl1765)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Determinants in net subgroups
Z. I. Borevich, N. A. Vavilov
Abstract:
Suppose $R$ is a commutative ring with 1, $\sigma=(\sigma_{ij})$ is a fixed $D$-net of ideals of $R$ of order $n$, and $G(\sigma)$ is the corresponding net subgroup of the general linear group $GL(n,R)$. There is constructed for $\sigma$ a homomorphism $\det_\sigma$ of the subgroup $G(\sigma)$ into a certain Abelian group $\Phi(\sigma)$. Let $I$ be the index set $\{1,\dots,n\}$. For each subset $\alpha\subseteq I$ let $\sigma(\alpha)=\sum\sigma_{ij}\sigma_{ji}$, where $i$, ranges over all indices in $\alpha$ and $j$ independently over the indices in the complement $I\backslash\alpha$ ($\sigma(I)$ is the zero ideal). Let $\det_\alpha(a)$ denote the principal minor of order $|\alpha|\leqslant n$ of the matrix $a\in G(\sigma)$ corresponding to the indices in $\alpha$, and let $\Phi(\sigma)$ be the Cartesian product of the multiplicative groups of the quotient rings $R/\sigma(\alpha)$ over all subsets $\alpha\subseteq I$. The homomorphism $\det_\sigma$ is defined as follows:
$$
\det_\sigma(a)=(\det_\alpha(a)\mod\sigma(\alpha))_\alpha\in\Phi(\sigma).
$$
It is proved that if $R$ is a semilocal commutative Bezout ring, then the kernel $\operatorname{Ker}\det_\sigma$ coincides with the subgroup $E(\sigma)$ generated by all transvections in $G(\sigma)$. For these $R$ is also defined $\operatorname{Im}\det_\sigma$.
Citation:
Z. I. Borevich, N. A. Vavilov, “Determinants in net subgroups”, Modules and algebraic groups, Zap. Nauchn. Sem. LOMI, 114, "Nauka", Leningrad. Otdel., Leningrad, 1982, 37–49; J. Soviet Math., 27:4 (1984), 2855–2865
Linking options:
https://www.mathnet.ru/eng/znsl1765 https://www.mathnet.ru/eng/znsl/v114/p37
|
Statistics & downloads: |
Abstract page: | 261 | Full-text PDF : | 77 |
|