Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 114, Pages 37–49 (Mi znsl1765)  

This article is cited in 2 scientific papers (total in 2 papers)

Determinants in net subgroups

Z. I. Borevich, N. A. Vavilov
Abstract: Suppose $R$ is a commutative ring with 1, $\sigma=(\sigma_{ij})$ is a fixed $D$-net of ideals of $R$ of order $n$, and $G(\sigma)$ is the corresponding net subgroup of the general linear group $GL(n,R)$. There is constructed for $\sigma$ a homomorphism $\det_\sigma$ of the subgroup $G(\sigma)$ into a certain Abelian group $\Phi(\sigma)$. Let $I$ be the index set $\{1,\dots,n\}$. For each subset $\alpha\subseteq I$ let $\sigma(\alpha)=\sum\sigma_{ij}\sigma_{ji}$, where $i$, ranges over all indices in $\alpha$ and $j$ independently over the indices in the complement $I\backslash\alpha$ ($\sigma(I)$ is the zero ideal). Let $\det_\alpha(a)$ denote the principal minor of order $|\alpha|\leqslant n$ of the matrix $a\in G(\sigma)$ corresponding to the indices in $\alpha$, and let $\Phi(\sigma)$ be the Cartesian product of the multiplicative groups of the quotient rings $R/\sigma(\alpha)$ over all subsets $\alpha\subseteq I$. The homomorphism $\det_\sigma$ is defined as follows:
$$ \det_\sigma(a)=(\det_\alpha(a)\mod\sigma(\alpha))_\alpha\in\Phi(\sigma). $$
It is proved that if $R$ is a semilocal commutative Bezout ring, then the kernel $\operatorname{Ker}\det_\sigma$ coincides with the subgroup $E(\sigma)$ generated by all transvections in $G(\sigma)$. For these $R$ is also defined $\operatorname{Im}\det_\sigma$.
English version:
Journal of Soviet Mathematics, 1984, Volume 27, Issue 4, Pages 2855–2865
DOI: https://doi.org/10.1007/BF01410739
Bibliographic databases:
UDC: 519.46
Language: Russian
Citation: Z. I. Borevich, N. A. Vavilov, “Determinants in net subgroups”, Modules and algebraic groups, Zap. Nauchn. Sem. LOMI, 114, "Nauka", Leningrad. Otdel., Leningrad, 1982, 37–49; J. Soviet Math., 27:4 (1984), 2855–2865
Citation in format AMSBIB
\Bibitem{BorVav82}
\by Z.~I.~Borevich, N.~A.~Vavilov
\paper Determinants in net subgroups
\inbook Modules and algebraic groups
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 114
\pages 37--49
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1765}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=669558}
\zmath{https://zbmath.org/?q=an:0552.15002|0496.15008}
\transl
\jour J. Soviet Math.
\yr 1984
\vol 27
\issue 4
\pages 2855--2865
\crossref{https://doi.org/10.1007/BF01410739}
Linking options:
  • https://www.mathnet.ru/eng/znsl1765
  • https://www.mathnet.ru/eng/znsl/v114/p37
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024