|
Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 114, Pages 7–27
(Mi znsl1761)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Identities of the algebra of triangular matrices
A. Sh. Abakarov
Abstract:
This paper deals with the ideals of identities of certain associative algebras over a field $F$ of characteristic zero. An algebra $W$ of matrices of the form$\begin{pmatrix}
\lambda & \mu
\\
0 & \omega
\end{pmatrix}$, $\lambda\in\Lambda$, $\omega\in\Omega$, $\mu\in M$, where $\Lambda$ and $\Omega$, are $F$-algebras with unity and $M$ is a $(\Lambda,\Omega)$-bimodule, is considered. Under certain natural restrictions on $M$ one obtains the equality of ideals of identities $T(W)=T(\Lambda)T(\Omega)$, if $[[x_1,x_2],x_3[x_4,x_5]]\in T(\Omega)$.
Citation:
A. Sh. Abakarov, “Identities of the algebra of triangular matrices”, Modules and algebraic groups, Zap. Nauchn. Sem. LOMI, 114, "Nauka", Leningrad. Otdel., Leningrad, 1982, 7–27; J. Soviet Math., 27:4 (1984), 2831–2848
Linking options:
https://www.mathnet.ru/eng/znsl1761 https://www.mathnet.ru/eng/znsl/v114/p7
|
Statistics & downloads: |
Abstract page: | 172 | Full-text PDF : | 103 |
|