Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 116, Pages 142–154 (Mi znsl1759)  

This article is cited in 3 scientific papers (total in 4 papers)

Simultaneous approximation of algebraic irrationalities

B. F. Skubenko
Full-text PDF (950 kB) Citations (4)
Abstract: This paper proves three theorems concerning the simultaneous approximation of numbers from a totally real algebraic number field. It is shown that for two given numbers $\theta_1$ and $\theta_2$ from a totally real algebraic number field, the constant $\gamma_{12}$ can be explicitly calculated, this being the upper limit of the numbers $C_{12}$ such that the inequality $\max(\|q\theta_1\|,\|q\theta_2\|)\leqslant(qC_{12})^{-\frac12}$ holds for infinitely many natural numbers $q$; likewise for the constant $a_{12}$ such that the inequality $\|q\theta_1\|\cdot\|q\theta_2\|<a_{12}(q^{\log}q)$ holds for infinitely many natural numbers $q$. It is shown that there exist $n-1$ numbers $\theta_1,\dots,\theta_{n-1}$ in an algebraic number field of degree n and discriminant d such that the inequality $\max(\|q\theta_1\|,\|q\theta_2\|)<(\gamma_q)^{-\frac{1}{n-1}}$ holds only for finitely many natural numbers $q$ if $\gamma>2^{-[\frac{n-1}{2}]}\sqrt{d}$ is fixed.
English version:
Journal of Soviet Mathematics, 1984, Volume 26, Issue 3, Pages 1922–1930
DOI: https://doi.org/10.1007/BF01670580
Bibliographic databases:
UDC: 511.9
Language: Russian
Citation: B. F. Skubenko, “Simultaneous approximation of algebraic irrationalities”, Integral lattices and finite linear groups, Zap. Nauchn. Sem. LOMI, 116, "Nauka", Leningrad. Otdel., Leningrad, 1982, 142–154; J. Soviet Math., 26:3 (1984), 1922–1930
Citation in format AMSBIB
\Bibitem{Sku82}
\by B.~F.~Skubenko
\paper Simultaneous approximation of algebraic irrationalities
\inbook Integral lattices and finite linear groups
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 116
\pages 142--154
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1759}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=687848}
\zmath{https://zbmath.org/?q=an:0538.10030|0513.10033}
\transl
\jour J. Soviet Math.
\yr 1984
\vol 26
\issue 3
\pages 1922--1930
\crossref{https://doi.org/10.1007/BF01670580}
Linking options:
  • https://www.mathnet.ru/eng/znsl1759
  • https://www.mathnet.ru/eng/znsl/v116/p142
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024