Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 338, Pages 227–241 (Mi znsl175)  

This article is cited in 3 scientific papers (total in 3 papers)

On some elements of the Brauer group of a conic

A. S. Sivatski

Saint-Petersburg State Electrotechnical University
Full-text PDF (227 kB) Citations (3)
References:
Abstract: The main purpose of this paper is to strenghen the author's results in articles [7] and [8]. Let $k$ be a field of characteristic $\ne 2$, $n\ge 2$. Suppose that elements $\overline{a},\overline{b_1},\dots,\overline{b_n}\in k^*/{k^*}^2$ are linearly independent over $\mathbb Z/2\mathbb Z$. We construct a field extension $K/k$ and a quaternion algebra $D=(u,v)$ over $K$ such that
1) The field $K$ has no proper extension of odd degree.
2) The $u$-invariant of $K$ equals 4.
3) The multiquadratic extension $K(\sqrt{b_1},\dots,\sqrt{b_n})/K$ is not 4-excellent, and the quadratic form $\langle uv,-u,-v,a\rangle$ provides a corresponding counterexample.
4) The division algebra $A=D\otimes_E (a,t_0)\otimes_E (b_1,t_1)\dots\otimes_E (b_n,t_n)$ does not decompose into a tensor product of two nontrivial central simple algebras over $E$, where $E=K((t_0))((t_1))\dots((t_n))$ is the Laurent series field in variables $t_0,t_1,\dots,t_n$.
5) $\operatorname{ind}A=2^{n+1}$.
In particular, the algebra $A$ provides an example of an indecomposable algebra of index $2^{n+1}$ over a field, whose $u$-invariant and 2-cohomological dimension equal $2^{n+3}$ and $n+3$, respectively.
Received: 09.11.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 145, Issue 1, Pages 4823–4830
DOI: https://doi.org/10.1007/s10958-007-0315-y
Bibliographic databases:
UDC: 512.552, 512.647.2, 512.77
Language: Russian
Citation: A. S. Sivatski, “On some elements of the Brauer group of a conic”, Problems in the theory of representations of algebras and groups. Part 14, Zap. Nauchn. Sem. POMI, 338, POMI, St. Petersburg, 2006, 227–241; J. Math. Sci. (N. Y.), 145:1 (2007), 4823–4830
Citation in format AMSBIB
\Bibitem{Siv06}
\by A.~S.~Sivatski
\paper On some elements of the Brauer group of a~conic
\inbook Problems in the theory of representations of algebras and groups. Part~14
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 338
\pages 227--241
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl175}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2355336}
\zmath{https://zbmath.org/?q=an:1120.16019|1113.11025}
\elib{https://elibrary.ru/item.asp?id=9305297}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 145
\issue 1
\pages 4823--4830
\crossref{https://doi.org/10.1007/s10958-007-0315-y}
\elib{https://elibrary.ru/item.asp?id=13539962}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547573024}
Linking options:
  • https://www.mathnet.ru/eng/znsl175
  • https://www.mathnet.ru/eng/znsl/v338/p227
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :49
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024