|
Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 116, Pages 5–13
(Mi znsl1746)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Net determinant over a Bezoutian local ring
Z. I. Borevich, N. A. Vavilov
Abstract:
Let $\sigma$ be any $D$-net of ideals of order $n$ over a commutative local Bezoutian ring $R$ and denote by $G(\sigma)$ the corresponding net subgroup in the general linear group of degree $n$ over $R$ (RZhMat, 1977, 2A280). We give an explicit computation of the factor group $G(\sigma)/E(\sigma)$, where $E(\sigma)$ is the subgroup generated by all elementary transvections in $G(\sigma)$.
Citation:
Z. I. Borevich, N. A. Vavilov, “Net determinant over a Bezoutian local ring”, Integral lattices and finite linear groups, Zap. Nauchn. Sem. LOMI, 116, "Nauka", Leningrad. Otdel., Leningrad, 1982, 5–13; J. Soviet Math., 26:3 (1984), 1839–1844
Linking options:
https://www.mathnet.ru/eng/znsl1746 https://www.mathnet.ru/eng/znsl/v116/p5
|
Statistics & downloads: |
Abstract page: | 212 | Full-text PDF : | 65 |
|